2. Developmental Toxicity Study of Irbesartan in Rats (Segment II)

Study No: 311/518 (Ter225)

<u>Performing Laboratory</u>:

Sponsor: Sanofi Recherche, Montpellier Cedex, France

Initiation of Treatment: 9/14/92

<u>Ouality Assurance</u>: A statement of conformance to GLPs is included.

Test Animals: OFA SD (IOPS Caw) RATS, supplied by IFFA Credo (France). Twenty five females per group were 10 to 12 weeks old and weighed 211-265 g when mated.

Procedure: SR 47436 (batch no. 92.02) was administered in 10% aqueous gum Arabic solution at doses of 0, 50, 150 and 450 mg/kg/day, once daily, by gastric intubation, from gestation day (GD) 6 to GD 15. The dose volume was 5 ml/kg for each group. Dams were observed daily for physical condition and mortality; body weight and food consumption measurements were made on GD 0, 6, 11, 16 and 20. Dams were C-sectioned on GD 20 and examined for number of corpora lutea in each ovary; numbers of implantation and resorption sites; and numbers of live and dead fetus. Fetal and placental weights were determined. Live fetuses were examined for determination of sex and external anomalies; half were examined for soft tissue abnormalities by free hand sectioning (modified Wilson-Barrow technique), the remaining half were first internally examined by dissection, and then cleared with KOH and stained with Alizarin-red (modification of Dawson method) for determination of skeletal abnormalities.

<u>Justification of Dosage</u>: Not provided. It was noted that no toxicity had been observed in dams or fetuses in a dose range study with doses of 0, 50, 150, and 450 mg/kg/day (6 pregnant rats per group).

<u>Definitions</u>: The following definitions were used by the sponsor to define fetal abnormalities found in this and in subsequent developmental toxicity studies in the rat and rabbit.

<u>Malformations:</u> Structural defects that are rare in the control population and are thought to be life-threatening or of major physiological consequence.

<u>Variations:</u> Minor abnormalities or defects that are relatively rare in the control population and/or are not considered to be of major physiological consequence.

<u>Incidental findings:</u> Minor abnormalities, defects or alternative forms that are either common in the control population or are of no known physiological consequence.

Drug Associated Findings:

<u>Dams</u>: After initiation of treatment, decreases in mean body weight and body weight gain, compared to control, were observed in the mid and high dose groups (not dose related). A decrease in body weight gain was observed at low dose only during the initial 5 days of dosing. Decreases in food intake were observed in all 3 treated groups (not dose related). All dams survived to scheduled C-section.

<u>Fetuses</u>: There was an absence of malformations or other structural anomalies in any (test or control group) fetus, with the exception of a few external variations which showed no relationship to treatment. There were no effects on fetal weight or postimplantation loss.

APPEARS THIS WAY

APPEARS THIS WAY
OR ORIGINAL

20 ----- GROUP 4 450 mg/kg MEAN MATERNAL BODY WEIGHTS DURING GESTATION 9 STUDY NUMBER 311/518 - FIGURE 1 -...... GROUP 3 150 mg/kg DAY OF GESTATION = - — GROUP 2 50 mg/kg MEAN BODY WEIGHTS (g) GONTROL 450 8 350 300 250 200

_			-
Iα	ы	A	7

>
COP
0
Ö
لسا
BLE
S
S
POSSI
۵.
}
S
BEST

* * * * * * * * * * * * * * * * * * * *	DOSE LEVEL	CONTROL	50	150	450
		1 1 1 1	mg/Kg	mg/Kg	mg/kg
DAY 0	HEAN	231.1	230.7	229.4	230.0
		12.5	14.0	••	12.7
	2	2.1	2.1	24	25
9 440	E	276.8	274.0	270.0	275.9
,		15.6	14.6	13.7	15.3
	E	2.1	2.1	24	2.5
	E C E E	308.8	7.762	293.1**	291.9
:	. O. st	17.71	16.4	13.0	19.5
	2:	21	21	24	2.5
)	2532	351.7	333.60	324.1**	329.6**
	S. D.	24.2	17.0	20.8	27.1
	Ł	2.1	17	2.4	2.5
20 70	NAME.	420.6	199.7	381.7**	387.6**
	.0.8	35.5	23.5	32.7	34.6
	£	2.1	2.1	24	25

HF 311518

SR 47436 - TERATOLOGY STUDY BY ORAL ROUTE (GAVADE) IN THE RAT (SEGMENT II). HEAN MATERNAL BODY WEIGHT CHANGES DURING GESTATION -- GIRMA

PAGE 1

450 mg/Kg

22.95** 7.21 25

	DOSE LEVEL	CONTROL	9.0 89.7.F.G	9X/6#
DAYS 0 TO 6	-E - C - E - C - C - C - C - C - C - C -	45.69 6.90 21	43.34 5.91 21	40.65 6.98 24
DAYS 6 TO 11	E N F O E	32.01 7.07 21	23.65** 5.41 21	23.10** 6.79
DAYS 11 TO 16	E O E	42.91 10.79 21	35.88 8.47 21	31.01** 9.96 24
DAYS 16 TO 20	E # F O E	68.87 14.14 21	66.15 13.05 21	57.86 19.86
Means calculated excluding	Means calculated excluding dams with no viable embryos/fatuses	# P (0 0 5);	Means calculated excluding dams with no viable embryos/fatuses or with no pups delivered.	6

BEST POSSIBLE COLL

HF 311518

RAT		ARY
THE		SUMMARY
ž		i i
SR 47436 - TERATOLOGY STUDY BY ORAL ROUTE (GAVAGE) IN THE RAT		MEAN MATERNAL POOD CONSUMPTION DURING GESTATION
COUTE		10 OE
DRAL H	r 11.	DURIN
) }	OMENI	TION
STUDY	(SEGMENT II).	ONSUMP
ATOLOGY		1000
- TER		ERNAL
436		HAT
SR 47		HEAN

	DOSE LEVEL	CONTROL	50 Mg/Kg	150 150 150	450 457 457
HATERNAL FOOD CONSUMPTION 918	HATERHAL FOOD CONSUMPTION Grams/ANIMAL/DAY	DAY			
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	24.3	23.9	23.8	24.1
8 01 0 6140		1.7	2.1	1.9	2.0
		21	2.1	24	2.5
	SPILLED	•	•	0	0
	7	27.9	24.8**	24.400	24.3**
DATS 6 TO AA		7. ~	2.4	2.1	2.7
		21	2.1	24	25
	SPILLED	0	o	0	•
	1	\$ 01	37.8	26.4**	26.0.
DATS II TO IN			7.7	3.2	3.6
	. a.	77	21	24	25
-	SPICLED	÷	0	0	0
	1	14.1	32.6	30.9**	30.2**
DATS 16 TO 20	} c	. en	7.6	3.7	3.2
	. =	2.1	21	. 24	2.5
	SPILLED	0	•	•	•

BEST POSSIBLE CUI

					PAGE	. 1
50	DOSE LEVEL	CONTROL	05	150 89/K9	450 #9/89	!!!
	32		2.5	2.5	25	
person record	: E#	2 2 2 4 1	2.2	25	100	
Aborted	· z.	0 0 0	00.	00.	00.0	
Died	2 =	0 0, 0	00.0	0	0.0	
Delivered Early	* 12 #*	G 0 .	0.0	6 0.	0.0.	
or and or controls	£	21	. 32	2.5	2.5	
Dans with Wable Petuses	~ ·	211	2.1 9.5	9 2	100	
Dams with no viable fetuses	• tus • s	00.	₩. ₩.	4 0.	o o .	
Corpora Lukea	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.8 3.5 21 347	13 2 3 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.6 3.2 364	15.4 2.7 25 386	
Implantation Sites	8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14.1 4.1 21 296	12.2 4.2 2.2 2.2 2.2	11 4 - 0 4 - 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12.6 4.3 2.5 31.6	Table 4
Preimplantation Loss	X E A B B B B B B B B B B B B B B B B B B	15.7	, 10 m	20.7	10.5 2.4.5	

ENTRANT 1.0 SUMMARY O S.D. ATOTAL ATOTAL ATOTAL B.D. ATOTAL AT		SR 47436 -	TERATOLOGY STU	UDY BY ORAL ROUTE (GAVAGE) IN THE RAT (SEGMENT II).	IN THE RAT	HP 311518	
HEAM 1.0 0.9 1.5 1.0			0	SAREAN SECTION DATA		PAGE	
HEARM 110 0.09 1.13 1.10			! !	50 RG/RG	150 mg/Kg	450 B9/Kg	ı t
Total HEAM 1.0 0.9 1.3 1.0 S.D. 1.2 2.6 1.3 1.0 3.5 1.0 Rarly HEAM 1.0 0.0 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.1 0.0<	ant at Clascifon			2.2	25	80 80	
Factor F		HEAN	1.0	6.0	so :	0.1	
NEAN		. a.	1.2	. ~	11 . 3 22 55	1.0 25	
HEAM 7.0 10.3 17.4 9.6 S.D. 20.9 20.9 11.4 9.6 S.D. 11.2 0.0 11.4 0.9 F.D. 11.2 0.2 2.2 2.3 F.D. 17.0 5.7 15.4 10.9 HEAM 9.6 6.1 22.5 10.9 HEAM 0.0 0.1 0.6 0.2 HEAM 0.0 0.1 0.6 0.2 HEAM 0.0 4.9 2.0 2.5 HEAM 0.0 4.9 2.0 2.5 HEAM 0.0 4.9 2.0 3.9 HEAM 0.0 4.9 2.0 3.9 HEAM 0.0 21.3 3.9 3.9 HEAM 0.0 21.3 3.9 3.9 HEAM 0.0 21.3 3.9 3.9 HEAM 0.0 0.0 0.0 0.0 HEAM <td></td> <td>TOTAL</td> <td>20</td> <td>61</td> <td>-37</td> <td>36</td> <td></td>		TOTAL	20	61	-37	36	
HEAM 1.0 0.6 1.1 2.1 2.2 2.2 3.4 2.2 3.5 3.4 2.2 3.5 3.7 HEAM 0.0 0.1 0.1 0.1 0.1 0.2 HEAM 0.0 4.5 10.0 1.5 HEAM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		MEAN S.D.	, e	10.3	17.4	33.4	
HEAN 0.0 0.1 15.4 2.2 2.2 16.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10	E o t l y	HEAN O. O.	0.1	 	₩ ES #	6 e s	
MEANN 7.0 5.7 15.4 8.1 MFAN 0.0 0.1 0.1 0.2 S.D. 0.0 0.1 0.2 23 TOTAL 0.0 4.5 2.0 3 MEANN 0.0 4.5 2.0 1.5 TOTAL 0.0 4.5 2.0 1.5 TOTAL 0 0 0 1.5 TOTAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		TOTAL	20	17	34		
HEANN 9.0 9.1 9.4 2.2 2.3 2.4 2.5 4.5 HEANN 9.0 10.0 10.3 17.4 9.6 11.4		HEAN . O .	. e	5.7	15.4	1.0 0.0	
FOTAL 0.0 4.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.0 2.0 2.0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	Late	HEAN	0.0			7.0	
HEANY 0.0 4.5 2.0 1.5 3.9 3.9 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5		FOTAL	2100	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 SD PC	\$ \$ \$ \$	
TOTAL 0 0 0 10.1 17.4 9.6 5.D. 9.6 20.9 23.3		# V V V V V V V V V V V V V V V V V V V	 	4.5	10.0	พ. พ. พ. ค.	Ţa
ИЕЛИ 10.3 17.4 9.6 5.D. 20.9 23.3 f 11.4	Dead fetuses	TOTAL	6	•	0	0 -	bie 4 (d
	postimplantation Loss	# # # # # # # # # # # # # # # # # # #	9.6	10.3	17.4	· 6 -	ont'd)

3
70 mg +37mg
KS WILL

(7)
5° 🗾
A134
F 3
AND THE
A . 5000

. 427
1.0

Transfer Fig. F		SR 47436	1	ERATOLOGY STUDY BY ORAL ROUTE (GAVAGE) IN THE (SEGMENT II). SUMMARY OF CESAREAN SECTION DATA	IN THE RAT	HF 311518 PAGE 3	
HEAM 13.1 11.5 10.3 11.6 12.5 25 25 25 25 25 25 25 25 25 25 25 25 25		DOSE LEVEL	1 1	50 89/K9	150 19/89		
HEAM 13.1 11.5 10.3 11.6 4.2	ognant at C-section	1		22	25	2.5	
HEAN 6.6 5.0 20.9 20.6 11.14 HEAN 6.6 5.0 20.9 20.0 11.14 TOTAL 139 11.6 16.9 44.6 21.7 HEAN 6.5 6.3 5.5 21.7 HEAN 40.4 53.14 53.14 13.6 13.1 HEAN 40.4 53.14 40.2 HEAN 50.50 52.14 66.5	Live Petuses	I &	1	11.5	10.1 4.7 2.5 2.55	11.6 4.2 290	
HEAN 6.6 5.8 5.8 2.2 6.1 2.7 2.7 2.7 2.7 2.8 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2		M M M M M M M M M M M M M M M M M M M	. 0 % 	89.7 20.9	82.6 23.3	Ф Ф 0 М	
HEAN 6.5 6.3 5.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	Tennies.	E O E E E E E E E E E E E E E E E E E E	7 3 3 5 6 6 6 7 1 1 2 1 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.5 2.5 121 6.9	80 ++60 20 20 	6.1 2.7 1.52 1.52 51.6	
H:F	e o (e m	F 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 1 2 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	6.3 2.3 2.1 53.1 53.1	25 4 9 5 2 4 9 5 3 4 9 5	50 2 3 50 50 50 50 50 50 50 50 50 50 50 50 50	<u>1a</u>
	1	!	05:05	52:48	52:46	18:52	ble 4 (confd)

Table 4 (cont'd)

7 2800	DOSE LEVEL	CONTROL	50 89/Kg	150 mg/Kg	450 1197/K9
		2.1	22	2.5	2.5
Pregnant at CaseChion	: 10:	21	21	24	2.5
Dame with Viable fetties	į				
	1	0.1	• . 0	en i	0.9
Resorptions: Total	. O.	1.2	.) i
	×	21	ra [**	r sh Y M	7 9 7
	TOTAL	0.7	•		,
	2	7.0	6.0	14.0	9.
	, O. w	9.6	6.2	D .	-1
			•	•	6
Virginia	HEAN	0.1	- •		
	s.p.	1.2	. · ·	~~	25
	2	7 7		32	12
	TOTAL	7.0			•
	***	7.0	6.0	6.31	. · · ·
	м. О.	9.6	6.2	5 · F	N
			<	1.0	0.2
Late	E Y S	D. 6		9.0	₩.0
	. D.		. ~	24	25
		17	. 0	#17	₹
	TOTAL	•			
	1848	0.0	0.0	1.2	n. e
	.0.	0.0	0.0	10.2	<u>.</u>
	<u>.</u>			,	,
					1
•	TOTAL	0	0	0	0
Dead Fetuses					,
	1		•	14.0	9.6
Postimplantation Loss	7 C W	9 9	6.2	16.0	T
		•			

BEST POSSIBLE COPY

•	cum

	47 47436	1	TERATOLOGY STUDY BY ORAL ROUTE (GAVAGE) IN THE (SEGMENT II).	IM THE RAT	HP 311518	
50Q	DOSE LEVEL	CONTROL	90 mg/Kg	150 190/Kg	1 1	! ! 1 ! 3 !
Pregnant at C-section M'	i	2.1	2.2	2.5	2.5	
Dams with Viable Petuses	æ	2.1	11	24	2.5	
Live Petuses	HEAR	13.1	12.0	10.7	11.6	
	. E	4.0	3.5	24.3	4.2	
	TOTAL	276	253	257	290	
	MEAN	93.0	0.46	0.9	з 06	
	# · D ·	9.6	e. 5	16.0	11.4	
	3	u u		•		
		2 %	. S	2.0	2.7	
	TOTAL	139	121	124	25 152	
	MEAN	50.6	6.97	44.6	\$1.8	
	. O.	11.6	18.2	21.5	21.7	
	E Y	e .	. 3	en '	so.	
a 3 4 4	8.0.	7.6	2.3	2.9	2.7	
	TOTAL	137	132	133	131	
	HEAN	1.61	53.1	55.4	41.2	Tat
		11.6	18.2	21.5	21.7	ole 4
Mex Matho M:P		08:50	52:48	52:40	48:53	4 (cor
Means calculated excluding dass with no visbl	dess with no	chable ferens.	6 6 6 6 1 1 F 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>nta)</u>

Table 5

Solution and solut

		MEAN PETAL NUMERICAL	MERICAL DAIA		PAGE 1
150g	DOSE LEVEL	CONTROL	\$0 80/K9	150 mg/Kg	450 #4/Kg
	•				
TO THE STATE OF TH			•	F 9	95.0
Fetuses.	HEAM		n #		0.16
	S.D.	9.0	20.0	2.4	25
	E NAME OF A	0.61	0.55	0.61	0.59
COMPLIATE AUTOM			•		80.0
	2461	0.59	95.0		-
of Male fetuats	. 0	90.0	90.0	61.9	72
		2.1			· • •
		0.61	0.56	1 4 . D	
(**********************************					95.0
	HEAN	0.57	- S - C - C - C - C - C - C - C - C - C	n 6	01.0
TOTAL PARTS TO	, O.	80.0	90.0	6	23
	E	2.1			96.0
Covariate Adjusted MEAN	ted MEAN	65. D	• C . D		
	-				
	GRAMS	•	0.0	40.4	4.07
of all Wiable Fetures	MEAN	14.4	•	0.47	0.29
	. o. s		77	24	S C (
	2 :	7 6	# O. †	8 0. 4	30. 7
Coveriate Adjusted MEAN	TOO NEVS				,
	2	4.21	4.14	4.12	97.7
of Male Petuses		0.75	0.57	06.0	7.0
		~~	2.1	~	77 7
		6. 4	4.14	• I · •)
ENTRY PUBLISHED				70 -	3,93
	MEAN	00.			0.27
	.D.	٠	^ ¢	22	52
	æ	12	200	19.6	3.95
	ALL MERK	7.6.	20.7		

3. Developmental Toxicity Study of Irbesartan/HCTZ Combination in Rats (Segment II)

Study No: 94017

Performing Laboratory:

Sponsor: Bristol-Myers Squibb

New Brunswick, NJ 08903

Initiation of Treatment: 5/31/94

<u>Ouality Assurance</u>: A statement of conformance to GLPs is included.

<u>Test Animals</u>: Crl:CD BR Sprague-Dawley rats (from Charles River in Portage, MI), 25 mated females per group, 12-13 weeks of age, were assigned to each of 5 groups.

Dose Levels

Group Number	Irbesartan (mg/kg/day)	Hydrochlorothiazide (mg/kg/day)
1	0	0
2	50	50
3	150	150
4	150	0
5	0	150

Procedure: Irbesartan (batch no. 3SNP006) and hydrochlorothiazide (HCTZ) (lot 48192) were administered in 1% sodium carboxymethylcellulose suspension as a combination. All rats on test were dosed once daily, by gastric intubation, from gestation day (GD) 6 to GD 15. The dose volumes were 2.5 (low dose combination) or 7.5 ml/kg (all other groups). Dams were observed twice daily for physical signs and mortality; body weight and food consumption measurements were made on GD 0, daily between GD 6 and GD 16, and on GD 20. Gravid uterine weight was obtained at C-section on GD 20. Dams were examined for number of corpora lutea in each ovary, numbers of implantation and resorption sites, live and dead fetal counts, fetal weights and crown-rump measurements; live fetuses were examined for determination of sex and external anomalies. All fetuses were examined for visceral anomalies by a fresh dissection technique. The heads from half of the fetuses in each litter were examined for soft tissue abnormalities by free hand sectioning (Wilson technique); the

remaining half were examined by a mid-coronal slice. All fetuses were examined for skeletal anomalies after clearing with KOH and staining with Alizarin-red S (modification of Dawson method).

Justification of Dosage: These dosages were based on the Segment II study with Irbesartan (study no. 311/518) where "slight, transient reductions in weight gain and food consumption were evident at 50 mg/kg/day, and greater reductions were observed at the two higher doses. (150 and 450 mg/kg/day)". A 1:1 ratio of BMS-186295 and HCTZ was selected "to provide the maximum exposure of the animals to the two drugs when they were administered in combination."

Mortality: One animal receiving the high dose combination died on GD 19 (considered to be compound related).

Drug Associated Findings:

Dams: After the initial 3 days of treatment, a statistically significant decrease in mean body weight (body weight loss) occurred for the high dose combination drug treated group. Throughout the treatment period, dose related and statistically significant decreases in mean body weight and body weight gain, compared to control, were observed in the combination drug treated groups (GD 8 to GD 16). Slight decreases in mean body weight and body weight gain were observed in the group treated with Irbesartan alone (P< 0.05 on GD 16). Dose-related decreases in food consumption were observed in the 2 combination drug treated groups, but there was no decrease in food intake for the groups treated with Irbesartan or HCTZ alone.

Fetuses: Mean fetal weight for the high dose combination group was slightly but significantly lower than control for females and for males and females combined, but it is claimed that the high dose mean value matches the mean value for historical controls, based on 108 data sets. It was suggested that the fetal growth retardation was "secondary to the poor condition of the dams".

APPEARS THIS WAY

APPEARS THIS WAY ON OSICHUAL

BEST POSSIBLE COPY

SPONSOR:BRISTOL-MYERS SQUIRE SPONSOR NO.:94017	BMS-186295/MCTZ: SEGMENT 11 ORAL TERATOLOGY STUDY IN RATS SUMMARY OF MATERNAL SURVIVAL AND PREGNANCY STATUS	186295/HCTZ: SEGMENT 11 ORAL TERATOLOGY STUDY IN SLIMMARY OF MATERNAL SURVIVAL AND PREGNANCY STATUS			PAGE
DOSE GROUP :		1	:	•	
* I I I I I I I I I I I I I I I I I I I	#0. X	#O. #		NO. X	NO. X
FEMALES ON STUDY	23	æ	25	æ	25
FEMALES THAT ABORTED ON DELIVERED	0.0	0.0	0.0	0.0	0.0
FEMALES THAT DIED			1 4.0		
FEMALES THAT ABORTED MONGGRAVID	00		0.0	0.0	0.0
GRAVID		0.0	1 100.0		
FEMALES THAT WERE EUTHANIZED					
RONGRAVID	0.00	00	0.0	0.6	0.0
FEMALES EXAMINED AT					
SCHEDULED MECHOPSY	25 100.0	25 100.0	24 96.0	25 100.0	
MONGRAVID	3 12.0	3 12.0			2 8.0
DRAVID	22 68.0	0.88 55		21 84.0	
THE SECTOSTICE	e. o	e. 0	0.0		0.0
WITH VIABLE FETUSES	22 100.0	22 100.0	20 100.0	20 95.2	23 100.0
TOTAL FEMALES GRAVID	22 88.0	22 88.0	21 84.0	21 64.0	23 92.0

BEST POSSIBLE COPY

h
122
6
2
•
(
C
œ.
r ra
t.
L 7

TABLE 2 (DALLY EXAMINATIONS) BMS-186295/HCT2: SEGNENT I OMAL TERATOLOGY STUDY IN RATS SPONSOR:BMISTOL-MYERS SOUISD SUMMARY OF CLINICAL FINDINGS: TOTAL OCCURRENCE/NO. OF ANIMALS	TABLE 2 (DAILY EXANIMATIONS) : SECHENT II ORAL TERATOLOGY L FIMDINGS: TOTAL OCCURRENCE	S) GY STUDY IN R CE/NO. OF ANI	ATS VALS		PAGE 1
• • • • • • • • • • • • • • • • • • •	FEXALE				
TABLE RANGE: GROUP:	05-31-94 TO 06-27-94	0 06-27-94	۳	-	
HORMAL -NO SIGNIFICANT CLINICAL OBSERVATIONS	42/24	\$2 /007	72 /877	92 /60 5	36 /999
DISPOSITION - FOUND BEAD - SENT TO LAB FOR SCHEDULED LAPAROHYSTERECTOMY	0 /0 22 /52	0/ 0 25/ 25	1, 1	0/ 0	0 /0
BOOV/INTECLMENT - MAR LOSS RIGHT FORELING - MAR LOSS RIGHT FORELING - MAR LOSS RIGHT WINDLING - MAR LOSS RIGHT WOUNAL AREA - MAR LOSS WENTRAL MECK - MAR LOSS WENTRAL MECK - MAR LOSS WENTRAL MECK - MAR LOSS WENTRAL MODACIC AREA - MAR LOSS WENTRAL MODALING - SCADBING RIGHT FORELING - MAR LOSS BASE OF TAIL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$25 \$75 \$75 \$75 \$75 \$75 \$75 \$75 \$7	\$2000000000000000000000000000000000000	866 800 800 800 800 800 800 800 800 800	397, 397, 00,00 00,00 00,00 00,00 00,00 00,00
1- 010 Mg/KG 2- 50150 Mg/KG 3- 150:150 Mg/KG	4- 150:0 MG/KG	5- 0:150 MG/KG	MG/KG		

Property of the second

٠, ٠٠
U 2 5"
7
le W
F 12 1
المحرير بالأ
See.
2.446.0
E
K-12.3305
* **
S
A CONTRACTOR OF THE PARTY OF TH
Mar the
1200

BMS- SPOMSOR: BRISTOL-MYERS SQUISD SUMMARY SPOMSOR BO : 64617	TABLE 2 (DAILY EXAMINATIONS) BMS-166295/NCT2: SECHENT II ORAL TERATOLOGY STUDY IN RAIS SUMMARY OF CLINICAL FINDINGS: TOTAL OCCURENCE/NO. OF ANIMALS	DA1LY 11 O 13: TO	TABLE Z (BATLY EXAMINATIONS) 1: SEGNENT II ORAL TERATOLOGY IL FINDINGS: TOTAL OCCURRENCE.	MS) OGY STUT NCE/NO.	OF ANIMALS	•			_	PAGE	~
		T W	FEMALE								
TABLE MANGE: 05-31-94 TO 06-27-94 GROUP: 1 4 5	TABLE RANGE: GROUP:		05-31-94 TO 06-27-94	10 06-27	2.5		m		·s		-
BOOV/INTEGUMENT -BLACK STAINING UNOCENTTAL AND ANGENITAL AREA 0/ 0 0/ 0 1/ 1 0/ 0 0/ 0 -BLACK STAINING OF TAIL -BLACK STAINING OF TAIL -NAIR LOSS RIGHT LATERAL ABDOMINAL AREA 0/ 0 0/ 0 0/ 0 1/ 1	AL AREA		0 /0 0 /0 0 /0)°°		>>>		666	900	007	60 60
EYES/EARS/NOSE -DRIED RED MATERIAL ARCUMD NOSE			3/ 1	£ /\$	m	3/	•	>	_	`	
EXCRETA - SOFT STOOL			1 1	0 /0	0	0 /0		3/ 1	-	0	0 /0
1. 0:0 MG/KG 2- 50:50 MG/KG 3- 150:150 MG/KG 4- 150:0 MG/KG 5- 0:150 MG/KG	3- 150:150 Ma/Ka 4- 150:0 Ma/Ka 5- 0:150 Ma/Ka	÷	150:0 Ma/K		0:150 Ma/	2					:

The same of the sa

į		GROUP 1	-	2	n	4	er n	
DAY	•	HEAN 8.D./H	265. 19.4/22	263.	267. 15.7/21	263. 14.6/21	· 266. 10.4/23	
ĎΑŸ	◆	NEAN 8.0./N	309.	301. 18.0/22	306. 18.5/21	303.	308. 13.8/23	: : : : : :
DAY	^	MEAN 8.0./N	310. 19.4/22	297. 15.2/22	296. 17.0/21	304.	300.	APPEARS THIS WAY
DAY	•	MEAN B.D./W	314. 20.2/22	298.* 15.8/22	297.**	30S. 17.1/21	303. 14.5/23	
DAY	•	NEAN S.D./N	320.	302.**	299.** 16.5/21	310. 16.0/21	310. 15.7/23	
DAY	2	B.D./H	327.	306.**	299.44	313.	319.	
DAY	Ξ	HEAN S.D./N	334.	313.44	301.**	320. 16.9/21	327. 18.2/23	APPERPS THIS WAY
DAY	2	MEAN 8.0./H	337.	317.00	302.** 16.8/21	326. 18.6/21	331. 19.1/23	ON ORIGINAL
DAY	=	MEAN 8.0./N	345.	321.40 18.3/22	306.44	331. 20.8/21	338. 19.9/23	
DAY	±	4 MEAN 8.D./N	353. 24.6/22	331.00	313.**	340. 21.0/21	347.	,
- • •	•	11	2- 50:50 Mg/KG DIFFERENT FROM CC	/KG 3-150:150 MG/KG M CONTROL GROUP 1 AT 0.03 M CONTROL GROUP 1 AT 0.01	50 MG/KG 4. 1 AT 0.05 LEVEL 1 AT 0.01 LEVEL	150:0 NG/KG L USING A TWO L USING A TWO	2- 50:50 MG/KG 3- 150:150 MG/KG 4- 150:0 MG/KG 5- 0:150 MG/KG DIFFERENT FROM CONTROL GROUP 1 AT 0.03 LEVEL USING A TWO TAILED DUNNETTY STEET DIFFERENT FROM CONTROL GROUP 1 AT 0.01 LEVEL USING A TWO TAILED DUNNETTY STEET	

*
i*
r
ϵ
C. Com
£*
2015 ·
P
gentati 🖺
eren in
(************************************
(°)
6
1,27%
$C \sim 1$
£
E. Const.

₫ ₫	150A:	SPONSOR, BRISTOL-NYERS SQUISE SPONSOR NO.: 94017	S SQUIRE	MEAN LEACH A	1007 WEIGHTS	MEAN BOOT WEIGHTS (GRAMS) DURING GESTATION	ESTATION	
	3	GROUP :	-	~	•	*	S	GROUP: 5 2 3 4 5
₹	DAY 1S	MEAN 8.D./H	361.	337.**	318.**	344.	357. 20.0/23	Wat only over a
DAY	•	REAN S.D./N	374.	348.** 21.5/22	326.**	355. * 26.9/21	369. 18.4/23	on original
DAY	2	MEAN S.D./N	439.	433.	415.*	432.	441. 27.7/23	DAY 20 MEAN 639, 433, 415.* 432, 441. 8.D./N 30.2/22 23.3/22 22.2/20 31.7/21 27.7/23
B	955	MO/KG HIFICANTLY HIFICANTLY WEIGHT(S)	2- 50.50 MO DIFFERENT FRO DIFFERENT FRO	1- 0:0 MG/KG 2- 50:50 MG/KG 3- 150:150 MG/KG 4- SIGNIFICANILY DIFFERENT FROM CONTROL GROUP 1 AT 0.4- B. SIGNIFICANILY DIFFERENT FROM CONTROL GROUP 1 AT 0.4- MONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN	150 MG/KG 1 AT 0.05 LE 1 AT 0.01 LE 0F MEAN	4- 150:0 NG/KG VEL USING A TWO-I VEL USING A TWO-I	1- 0:0 MG/KG 2- 50:50 MG/KG 3- 150:150 MG/KG 4- 150:0 MG/KG 5- 6:150 MG/KG 4- 5: SIGNIFICANLY DIFFERENT FROM COMIROL GROUP 1 AT 0.03 LEVEL USING A TWO-TAILED DUNNETT'S TEST 4- 8 SIGNIFICANLY DIFFERENT FROM COMIROL GROUP 1 AT 0.01 LEVEL USING A TWO-TAILED DUNNETT'S TEST MONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN	

2
í
i.
C.
A
Corr
MACRONIA IN
2327
60
#0.22.2.21
('
A
A34
(
(A)
C.
Large Large
2 4
, e
7.4

DAY O. 6 MEAN 46, 38, 39, 40, 41, 76,72 B.6,722 B.6,721 B.7,722 BAY 6. 17,722 BAY 6. 17,722 BAY 6. 17,723 BAY 6. 17,723 BAY 7.7,722 B.7,723 BAY 8. 10.7,74 B.7,723 BAY 10-11 MEAN 7.7,72 B.7,723 BAY 10-11 MEAN 7.7,72 B.7,723 BAY 11-12 MEAN 4.1,722 B.7,723 BAY 11-12 MEAN 4.1,722 B.7,723 BAY 11-12 MEAN 4.1,722 B.7,723 BAY 11-13 MEAN 4.3,722 B.7,723 BAY 11-13 MEAN 4.3,723 B.7,723 BAY 11-13 MEAN 4.3,722 B.7,723 BAY 11-13 MEAN 4.3,723 B.7,723 B.7,723 B.7,723 BAY 11-13 MEAN 4.3,723 B.7,723 B.7,	Š	10111011011011	2						
0 - 6 MEAN		GROUP	-	_	2		7	s.	
6- 7 HEAN 4.7/22 7.3/22 6.8/21 6.8/21 6.1/23 7- 8 HEAN 4.7/22 7.3/22 7.3/22 7.1.** 6.0/21 6.1/23 8- 9 HEAN 8.1/22 8.0./N 8.0./N 8.0./N 8.0./N 8.0./N 8.9/22 8.0./N 8.9/22 8.0./N 8.9/22 8.0./N 11- 12 HEAN 8.9/22 8.0./N 8.0./N 8.9/22 8.0./N 13- 14 HEAN 8.0./N 8.0.	Ā		3 5	44.	38,	39.	40. 9.0/21	41. 7.9/23	
7. B HEAN 8. D./N 9. S. N/22 9. S. N/22 9. S. N/22 9. S. N/22 9. S. N/23 11. IZ MEAN 12. I3 MEAN 13. S. N/22 13. I4 MEAN 9. S. N/22 14. S. D./N 15. I4 MEAN 9. S. N/22 16. S. N/23 17. S. D./N 18. D./N 19. S.	¥			4.7/22	7.3/22	.8.** 6.8/21	1:	6.1/23	
8 - 9 MEAN 6 - 3 - 2 - 4 - 6 - 5/21 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/23 5.0/22 5.0/21 5.0/21 5.0/23 5.0/23 5.0/22 5.0/21 5.0/21 5.0/23 5.0/23 5.0/21 5.0/22 5.0/21 5.0/23 5.0/21 5.0/23 5.0/21 5.0/23 5.0/21 5.0/23 5.0/21 5.0/23 5.0/21 5.0/23 5.0/21 5.0/23 5.0/21 5.0/23 5.0/23 5.0/21 5.0/23 5.0/23 5.0/21 5.0/23 5.0/23 5.0/21 5.0/23 5.0/23 5.0/21 5.0/23 5.0/23 5.0/21 5.0/23 5.0/23 5.0/22 5.0/21 5.0/21 5.0/23	¥		8 5	3.7/22	5.4/22	5.0/21	2. 4.0/21	6.1/23	ON ORIGINAL
9- 10 MEAN 7. 4. 1.** 3. 9. 17/23 10-11 MEAN 7. 6.5/22 6.1/21 3.7/23 4.7/23 10-11 MEAN 3.9/22 6.5/22 6.1/21 3.7/21 4.4/23 11-12 MEAN 3. 4.7/22 5.9/21 6.6/21 4.7/23 11-12 MEAN 4.1/22 6.7/22 5.9/21 6.6/21 4.7/23 11-13 MEAN 8. 5. 9/22 6.8/21 7.9/21 5.3/23 11-14 MEAN 8. 5. 9/22 6.8/21 7.9/21 5.1/21 4.7/23 11-14 MEAN 8. 5.8/22 6.8/21 7.5/21 5.1/21 4.7/23 11-15 MEAN 8. 6.8/22 7.5/21 5.1/21 4.7/23 11-15 MEAN 8. 6.8/22 6.1/21 4.5/21 4.2/23	\		7. A.R.	6. 5.1/22	3.8.8	2.8 5.3/21	6.5/21	5.0/23	
10- 11 MEAN 7. 7. 1.44 7. 4.4/23 11- 12 MEAN 3. 4. 2. 6.7/22 6.1/21 3.7/21 4.4/23 11- 12 MEAN 4.1/22 6.7/22 5.9/21 6.6/21 4.7/23 12- 13 MEAN 8. 5.9/22 6.8/21 7.9/21 5.3/23 13- 14 MEAN 8. 10. 7. 7. 8. 10. 10. 8.0./N 5.8/22 6.8/21 5.1/21 4.7/23 14- 15 MEAN 8. 6.8/22 7.5/21 5.1/21 4.7/23	>	-	# # W	5.1/22	7.3/22	1.4*	3.	9. 4.7/23	
11- 12 MEAN 3. 4. 2. 6. 7/23 1. 6.6/21 4.7/23 1. 12-13 MEAN 4.1722 5.9/21 6.6/21 4.7/23 1. 12-13 MEAN 6. 5.9/22 6.8/21 7.9/21 5.3/23 1. 13-14 MEAN 6. 10. 7. 6. 10. 7. 6. 10. 8.0./N 5.8/22 6.8/21 5.1/21 4.7/23 1. 4.7/23 1. 4.2/23 1. 4.2/23 1. 13-14 MEAN 6. 6.8/22 6.1/21 4.5/21 4.2/23			₹₹	3.9/22	7. 6.5/22	6.1/21	3.7/21	8.	
12- 13 HEAN 6. 5. 4. 5. 7. 7. 8. 7. 12- 13 HEAN 6. 3. 6. 8/21 7.9/21 5.3/23 13- 14 HEAN 6. 10. 7. 6. 10. 10. 10. 8.0./N 5.8/22 6.8/22 7.5/21 5.1/21 4.7/23 14- 15 HEAN 6. 6. 5.6/22 6.1/21 4.5/21 4.2/23		11- 12 ME 8.0.	# *	3.	4. 6.7/22	2. 5.9/21	6.6/21	4.7/23	
13-14 PEAN B. 10. 7. 6. 8.0./N 5.0/22 6.8/22 7.5/21 5.1/21 14-15 PEAN B. 6. 5. 7.5/21 4.5/21		12- 13 HE. 8.D.	* *	6.3/22	5.9/22	6.8/21	5.7.9/21	3.3/23	
16-15 HEAN 8. 6. 5. 4. 8.D./N 4.8/22 5.6/22 6.1/21 4.5/21		3- 14 ME	3 5	6. 5.8/22	10. 6.8/22	7.	5.1/21	10.	,
	<u> </u>	14- 15 HE		6.8/22	6. 5.6/22	5.	4.5/21	9. 4.2/23	-

:		GROUP 1	-	2		•	a ^	
DAY		15- 16 MEAN 8.D./N	13.	11.	7.2/21	11.	13, 7.5/23	
DAT	5	20 MEAN 8.0./N	65. 10.0/22	85.00 13.3/22	86.44 12.6/20	76. * 10.5/21	72. 16.6/23	en e
DAY	÷	9 MEAN 8.0./N	12.	1.4*	-7.00 8.7/21	7. 6.7/21	3.**	OH UNDEREN
DAY	÷	9- 12 MEAN 8.D./N	16.	15.	6.1/21	16. 10.0/21	20. 8.0/23	
DAY	-21	16 MEAN 8.0./M	37.	32. 6.9/22	23.**	29. 12.6/21	39. 7.3/23	
DAY	÷	16 HEAN 8.0./N	65. 10.1/22	47.**	20.** 26.6/21	52. 21.1/21	62. 12.6/23	ON COSTANT
DAY	ò	20 HEAN 5.0./H	174. 19.9/22	170. 16.4/22	148.**	168.	175. 22.8/23	
-::		1- 0:0 MG/KG 2- 50:50 MG/KG 3- 150:150 MG/K - SIGNIFICANILY DIFFERENT FROM CONTROL GROUP 1 AT 0 ** SIGNIFICANILY DIFFERENT FROM CONTROL GROUP 1 AT 0	2- 50:50 HG/ IFFERENT FROM	010 MG/KG 2-50:50 MG/KG 3-150:150 MG/KG 4-81GN/FICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.05 LEVEL BIONIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.01 LEVEL	50 MG/KG 4- 1 AT 0.05 LEVEL 1 AT 0.01 LEVEL	150:0 MG/KG USING A TWO-T USING A TWO-T	150:0 MG/KG 5- 0:150 MG/KG USING A TWO-TAILED DUMNETT'S TEST USING A TWO-TAILED PINNETT'S TEST	

SPONSOR:BI	SPONSOR: BRISTOL - NYERS SQUIBI	1 500188	MEAN GRAVE	BMS-186295/HCTZ: SECHENT II ORAL TERATOLOGY STUDY IN MAIS MEAN GRAVID UTERINE WEIGHTS AND WET BODY WEIGHT CHANGES (GRAMS)	NF 11 ORA TS AND WE	L TERATOLOGY T BODY WEIGHT	STUDY	IN RATS ES (GRAMS)		PAGE 1
SPONSOR NO.194017	FONSOR NO. 194017 GROUP:		-	2		'n		₩.	٠.	
INITIAL BOOY VI.	REAK B.D.		265. 19.4 22	263. 14.0 22		267. 16.1 20		263. 14.6 21	266. 10.4 23	
TEANTHAL BOOY UT.	S.O.		439. 30.2 22	433. 23.3		415.* 22.2 20		432. 31.7 21	441. 27.7 23	APPERIS THIS WAL
GRAVID MEAN UTERINE WT. 8.D. N	MEAN . S.D.		65.1 19.65 22	95.5 12.49 22		82.3 13.21 20	8	87.3 22.77 21	68.3 10.69 23	200
NET BODY NT.	#EA. 6.0.		353.9 22.27 22	337.6* 14.21 22		332.8** 18.44 20	27 ←	344.2 19.86 21	353.0 23.57 23	Man Salahar
HET BODY MEAN UT. CHANGE S.D.	S.D.		89.3 10.46 22	74.9** 12.32 22		65.7** 13.83 20	- 🚑	81.2 17.88 21	86.7 19.18 23	
1- 0:0		2. 50:50 H	60 MG/KG 3-	3- 150,150 MG/KG	4- 15	4- 15010 MG/KG		0:150 MG/KG		

1- 0:0 MO/KG 2- 50:50 MG/KG 3-150:150 MG/KG 4- 150:0 MG/KG 5- 0:150 MG/KG - 8 SOBHIFICANILY DIFFERENT FROM CONTROL GROUP 1 AT 0.05 LEVEL USING A ING-FAILED DUMNETI'S IEST
- 8 SIGNIFICANILY DIFFERENT FROM CONTROL GROUP 1 AT 0.01 LEVEL USING A ING-TAILED DUMNETI'S TEST

LIGISSUA ISSU

	N SOR	SPONSOR NO. 194017		HEAN FOOD COM	SUMPTION DURING	GESTATION (GR	HEAN FOOD CONSUMPTION DURING GESTATION (GRAMS/ANIMAL/DAY)	
i	i	ממטה	-	2	m	•	in.	
DAV	Ġ	6 HEAN 5.D./H	23.22	23.1/22	25.	24.	25. 1.5/23	
DAY	÷	7 HEAN 8.D./H	26.	21,**	19.00	2.0/21	22.** 3.1/23	VAIN SHIF OF
DAY	ř.	8.0./H	26. 3.6/22	3.9/22	21.00	3.0/21	24.	APPEARS LINE WAL
DAT	.	9 HEAN 8.0./H	3.6/22	25. 3.8/22	21.44	25.	26. 3.6/23	
DAY	÷	9. 10 NEAN 8.D./N	2.5/22	24. 5.2/22	20.44	26. 3.2/21	28.	
DAT	Ģ	10- 11 MEAN \$.D./N	3.0/22	26. 6.4/22	20. ** 5.3/21	25.	3.8/23	
DAY	Ė	11. 12 REAN 8.0./N	3.1/22	25. 6.2/22	\$.5/21	27.	27. 5.0/23	
DAY	₹.	12- 13 MEAN 8.0./N	29.	26. 6.7/22	22.** 6.9/21	27. 5.5/21	29.	AVINSIA SURVEY
DAY	Į.	13- 14 HEAN 8.D./N	3.6/22	29. 6.3/22	23.* 8.2/21	28. 5.1/21	29. 3.6/23	
DAV	<u>÷</u>	DAV 14- 15 MEAN 8.D./N	3.0/22	26.	21.** 8.3/21	25. 5.0/21	3.7/23	Page
÷••		1- 0:0 MG/KG - SIGNIFICANTLY - SIGNIFICANTLY	•	2- 50:50 MG/KG 3- 150:150 MG/KG 4- DIFFERENT FROM COMTROL GROUP 1 AT 0.05 LEVEL DIFFERENT FROM COMTROL GROUP 1 AT 0.01 LEVEL	50 MG/KG 4. 1 AT 0.05 LEVEL 1 AT 0.01 LEVEL	150:0 MG/KG USING A TWO-T	150:0 MG/KG 5- 0:150 MG/KQ USING A TWO-TAILED DUNNETT'S TEST USING A TWO-TAILED DUNNETT'S TEST	e 10

:		GROUP :	-	2	n	•	un.	
DAY		15- 16 MEAN 8.D./H	31.	28. 5.0/22	24.**	29.	31.	
DAY	•	20 MEAN 8.0./N	1.9/22	31.	33.	32. 3.0/21	32.	AVM SHIL SCALCAY
DAY	•	B.D./H	2.9/22	23.44	20.**	2.3/21	3.2/23	(5) (5) (5) (5) (6) (7)
DAY	ė	9- 12 NEAN 8.0./N	2.3/22	25.	20.** 4.8/21	26. 3.0/21	28.	Jense 1
DAY	<u>:</u>	12- 16 NEAM S.D./W	29.	27.	23.00	4.4/21	30.	Addition 120
DAY	÷	6. 16 HEAN 8.D./N	20. 2.2/22	3.4/22	21.44	26. 3.0/21	3.2/23	
DAY	ò	0- 20 MEAN 8.D./N	1.9/22	26. 1.8/22	25.44	27.	26. 2.2/23	
1- BONGRA	2000	D MO/KO GWIFICANTLY GWIFICANTLY	1- 010 MQ/KQ 2- 50150 MQ/KG 3- 1501150 MQ/K = SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 TO 0. ** SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0. *** SIGNIFICANTLY DIFFERENT FROM CONTROL GROUP 1 AT 0.	CONTROL GROUP CONTROL GROUP CALCULATION OF	50 MG/KG 4- 1 AT 0.05 LEVEL 1 AF 0.01 LEVEL MEAN	150:0 NG/KG USING A TWO- USING A TWO-	010 MG/KG 2-50150 MG/KG 3-1501150 MG/KG 4-15010 MG/KG 5-01150 MG/KG 81011110 MG/KG 5-01150 MG/KG 81011110 MG/KG 8-01150 MG/KG 81011110 MG/KG 8-01150 MG/KG 81011111111111111111111111111111111111	

ζ

L. C. COCK HOLE

March Control Control

							1504			44	FETAI	, O.
GROUP	* *	SEX .	VIABLE	DEAD	RESORP	RESORPTIONS IMPLA	Z -	IMPLANTATION CORPORA SITES LUTEA	CORPORA	IMPLANTATION LOSS	WEIGHTS IN GRAMS	GRAVID FEMALES
1 TOTAL	AL 167	165	332	0	72		52	357	184	ç	4	;
MEAN	1.6	7.5	12.1	0.0	7	0.0]	(4	200) <u>_</u>	£ h	23
8 .0.	2.83	5.43	3.65	0.00	1.95	0.21	1.93	2.98	2.82	 	0.23 25.0	
2 101	TOTAL 176	702	380	0	\$	0	2	398	432	71	*	"
MEA	8.0		17.3	0.0	9.0	0.0	0.0	10.1	19.6		¥ *	3
8.0	. 2.27	3.03	2.31	8.0	0.60	0.00	0.60	2.37	2.80	1.79	0.20	
3 101	TOTAL 150	157	307	•	79	•	92	111	707	7	5	ş
_	7.5		15.4	0.0	1,3	0	-	16.7	*C UC.	-	£ .	3
S.D.	2.54	62.	2.70	0.00	0.98	0.00	0.98	2.25	3.33	3.85	92.0	
101	11 172	154	326	0	22	0	22	348	871	ç	1	÷
MEA	1 8.2	7.3	15.5	0.0	0.	0.0	1.0	16.6	17.5	9 6	£ ^	j
8.0	8.D. 3.30	3.54	4.18	0.00	1.24	0.00	1.24	3.87	3.30	0.97	0.35	
1101 2	TOTAL 152	198	350	0	22	•	30	380	434	35	3	7.
MEAN	9.9	9.6	15.2	0.0	0.0	4.0	1.3	16,5	18.9	2.3	1	2
٠ •	1.0. 1.73	2.27	2.21	0.00	0.0	1,67	۲.۲	2, 13	2.88	2.77	0.32	
* = SIGNIFICANTLY	MIFICA	FICANTLY DI	FFERENT F	* - SIGNIFICANTLY DIFFERENT FROM CONTROL AT 0.05 LEVEL IA - NOT APPLICABLE	AT 0.05 I	EVEL				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
MEAN NUM TOTAL NU TOTAL NU	25 C C C C C C C C C C C C C C C C C C C	VIABLE F DEAD F EARLY	FETUSES C FETUSES C RESORPTI	HEAN MUMBER OF VIABLE FETUSES COMPARED USING DUNNETT'S TEST; Total Mumber of Dead Fetuses compared using mann-untiney test; Total Mumber of Early Resorptions compared using Mann-untiney Test;	ING DUNNET NO MANN-WY D USING MA	IT'S TEST; HTMEY TEST NM-WHITMEY	7681;	TOTAL POST IMPL MEAN NUMBER OF MEAN NUMBER OF	ANTATION IMPLANTAT CORPORA L		USING MAR PARED USIN USING DUN	M-WHINEY II G DUNNETT'S NETT'S TEST
SEX RATE	O COMP.	NED US	ING CHI S	IOTAL MUMBER OF LATE RESORPTIONS COMPARED USING MANN-WHITMET TEST; SEX RATIO COMPARED.USING CHI SQUARE TEST	USING MAN	IN-VALINET		FETAL VEIGHTS (WEIGHTS COMPARED USING	ISING DUNNETT'S TEST	S TEST	

100000000000000000000000000000000000000	SPONSOR NO. 194017					
GROUP RUMBER:	-	N		po,	•	•
CORPORA LUTEA	17.5	, ,	č	•		
. a	2.82	2.60	N 60 6		4.30 1.30	16.9 2.88
IMPLANTATION SITES	}	ł			17	Σ.
MEAN	16.2	18.1	16.7		16 A	7
 **	2.98 22	2.37	2.25		3.67	2.13
UTABLE SETTISES (Y)					.	3
	92.7	95.5	8.16		£ 06	5
8. 0.	14.58	4.33	6.43		24.78	
=	22	22	20		212	7.72
DEAD FETUSES (X)	•	,				
	D. 6	0.0	0.0		0.0	0.0
	22	0.00	0.00		0.00	0.00
EARLY RESORPTIONS (Y)					5	3
	4	¥ 7	•		;	
8.0.	14.67	4.33	2.0		 	5.4
*	22	22	22		21.7	<u> </u>
LATE RESORPTIONS (X)				-	•	}
	0.3	0.0	0.0		- -	,
.o.	1.43	00.0	0.00			2.2
2 · · · · · · · · · · · · · · · · · · ·	22	22	20		12	2.
1. 0:0 MQ/KG 2. 50	50:50 MG/KG	3- 150:150 MG/KG 4-	150:0 MG/KG 5.	0:150 MG/KG	J	

PROPORTIONAL (X) DATA COMPARED USING THE KRUSKAL-WALLIS TEST CORPORA LUTEA AND IMPLANTATION SITES COMPARED USING DUNNETT'S TEST ** ** SIGNIFICANTLY DIFFERENT FROM THE COMPANDL GROUP AT THE 0.05 LEVEL

, k
· `
Carrier .
233
P
CEE: T
enter of
•
CONTRACTOR OF THE PARTY OF THE
€5
TVLSF EG
F
* *
()
C *
4.
بيرع

4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 52 53.2 14.19 22 14.19 22 14.19	SUMMANT OF MEAN FETAL DATA AT SCHEDULED MECROPSY (X PER LITTER)
7.3 4.5 14.56 4.33 22 22 22 22 7.4 7.4 8.06 22 22 14.56 4.5 14.5 4.3 12.54 46.9 12.54 46.9 12.54 19.19 12.55 14.19 12.55 15.19 13.6 3.7	· · · · · · · · · · · · · · · · · · ·
(X) 7.3 4.55 (X) 7.8 4.33 7.45 6.06 7.45 6.06 7.5 7.3 4.5 14.56 4.33 22 22 22 22 14.56 4.3 12.54 14.19 22 22 22 46.9 12.54 14.19 22 22 23 22 24.9 12.55 14.19 25 22 27 22 28 22 29 22 20 20 22 20 22	
(x) 7.4 7.4 7.43 6.06 2.2 2.2 14.56 50.2 50.2 46.9 12.54 46.9 12.54 46.9 12.54 46.9 12.54 46.9 12.55 12.54 13.19 12.55 13.19 13.2 23.2 24.3 25.2 26.2 26.3 27.3 28	
(X) 7.8 8.06 8.06 7.4 8.3 8.06 8.2 22 22 22 22 22 22 22 22 22 22 22 22 2	21.78 9.72
7.4 7.43 8.08 22 22 22 4.3 14.56 50.2 46.9 12.54 46.9 12.54 46.9 12.54 14.19 22 22 46.9 12.54 14.19 22 22 22 22 22 22 22 22 22 2	
7.43 8.06 22 22 14.56 4.33 50.2 46.9 12.54 19.19 12.55 14.19 12.55 15.19 3.6 3.7	•
14.58 4.5 14.58 4.33 22 22 22 22 50.2 46.9 12.54 14.19 22 22 49.8 53.2 12.55 14.19 12.55 14.19 12.55 14.19	\$. Z
14.56 4.3 22 22 22 23 22 50.2 46.9 12.54 14.19 22 22 49.8 53.2 12.55 14.19 22 22 23 22 24.10 53.2 25 22 26 3.7	12.18 50.4FI
14.58 4.3 22 22 50.2 46.9 12.54 14.19 22 22 49.8 53.2 12.55 14.19 22 22 23.2 24.10 25.2 26.2 27.2 28.3 28.3 29.8 20.3 20.	
14.56 4.33 50.2 46.9 12.54 14.19 22 22 49.8 53.2 12.55 14.19 22 22 3.8 3.7	
50.2 46.9 12.54 14.19 12.54 14.19 22 53.2 12.55 14.19 22 22 22	
50.2 46.9 12.54 14.19 22 22 49,8 53.2 12.55 14.19 22 22 22	21 23
50.2 12.54 14.19 22 22 12.55 14.19 22 22 23.2 14.19 3.0 3.7	
12.54 14.19 22 22 49,8 53.2 12.55 14.19 22 22 3.8 3.7	
49,8 53.2 12.55 14.19 22 22 22 3.8 3.7	17.70
49,8 53.2 12.55 14,19 22 22 3.6 3.7	
49,0 53.2 12.55 14,19 22 22 3.0 3.7	
12.35 14.19 22 22 3.8 3.7	
3.0 3.7	
3.0	20 23
7.0 0.0	,
	-
8.0. 0.32 0.21 0.30 H	20 20 20

PROPORTIONAL (X) DATA COMPARED USING THE KRUSKAL-WALLIS TEST FETAL WEIGHTS COMPARED USING DUNNETT'S TEST NOME SIGNIFICANTLY DIFFERENT FROM THE CONTROL GROUP The same of the same of the same of

SPONTORIBRISTOL-WYERS SOUISE SPONSOR NO. 194017	BHS-	8MS-186295/HCTZ: SEGMENT II ORAL TERATOLOGY STUDY IN RAIS SUMMARY OF MEAN FETAL DATA AT SCHEDULED NECROPSY (K PER LITTER)	II ORAL TERATOLOG	F STUDY IN RATS		PAGE
GROUP HUNDER: 1 5 5	-	~		P	4	•
FEMALE FETAL WEIGHTS (9) PEAN 8.D. N	3.6 0.20 22	3.5 0.17 22		3.4° 0.26 20	3.6 0.32 20	3.6 0.27 23
COMBINED FETAL WEIGHTS (B) 3.7 B.D. 0.23	3.7 0.23 22	3.6 0.20 22		3.5* 0.26 20	3.7 0.34 20	3.7 0.32 23
1- 010 MG/KG 2- 50150 MG/KG 3- 1501150 MG/KG 4- 15010 MG/KG FETAL WEIGHTS COMPARED USING DUNNETT'S TEST ** SIGNIFICANTLY DIFFERENT FROM THE CONTROL GROUP AT THE 0.05 LEVEL	SO MG/KG DUNNETT'S FROM THE CC	3- 150:150 MQ/KG 4- 150:0 MQ/KG 5- 0:150 MG/KG TEST COMIRCL GROUP AT THE 0.05 LEVEL	4- 150:0 MG/KG .05 LEVEL	5- 0:150 MG/KG		

SPONSOR NO. 194017										_	DAY 20
1 pose grave	DOSE GROUP:	-	= ~	33		~	-	1 2	- m	. ·	~
SHARER EXAMINED ENTERNALLY		265	380	307	326	350	≈.	22	8,	≈	2
MICROPHINALNIA AND/OR ANDPHINALNIA			•	-				-	o -	o c	00
MANDIBULAR MICROGRATHIA Chabital office		- c	0 0	۰-	0 0	0 0	- c	00	۰.	0 0	0 0
EXCENTALMIA		• •	•		•	• •	• •	- 0		- 0	-
HAMDIOULAR AGRATULA		٥ (0		0	0 (•	0	_	0	•
FILED FALSTE		-	•		- 0	- 0	-			00	0 0
MICROSTONIA		0	•	_	0	. 0	. 0		-	0	0
ADACITLY			0	0	0	0 (-	0	0	0	0
BRACHYDACTYLY Fetal amasarca			00	00	00	• •		00	00	00	o c
AGLOSSIA		0	0	_		. 0	۰.	. 0	· –		
ABLEPHARIA Vertebal agresis		o -	00	-0	00	00	o -	00	-0	00	00
KLMBER EXAMINED VISCERALLY KLMGER WITH FINDINGS		332	380	307	326	350	2 0	~=	20	20	23
NUMBER EXAMINED SKELETALLY Vertebral Amunaly With or Without Associated Rib Andhaly Bert Limb Bone(s)	TED RIB ANOMALY	332	900	705	938	350	~	200	2-0	200	2-6
TOTAL MUMBER WITH MALFORMATIONS External :		-	•	-	0	0	-	•		, 6	
SOFT TISSUE: SKELETAL :		o -	00	o-	00	٥-	o -	00	o-	00	o -
COMBINED 1		-	•	-	0	-	_	0	Ç	0	_
1- 0:0 Mg/Kg 2- 50:50 Mg/Kg 3-	3- 150:150 MG/KG		150.0 40.77		•	627.62			:	:	:

TABLE 10 (RE-MACAL'S FIBLE 12) BMS-186295/HCIZ: SECHENT II ORAL TERATOLOGY STUDY IN RATE EDINGMENT OF FETUSES AND LITTERS WITH VARIATIONS - SUMMANY SUMMANY	TABLE 10 MENASTABLE CONENT 11 ON AND LITTERS	E 12)	RATOLO	OY STU TIONS	OY IN RATS					PAGE	-
		:		:					_	DAY .	2
: andre geog	-	<u>"</u> ~	S m	e 4	•	-	_~			•	:
NUMBER EXAMINED EXTERNALLY NUMBER UITH FINDINGS	332	900	307	326	350 0	22 0	20	25	25	ສ	
MUMBER EXAMINED VISCERALLY MAJOR BLOOD VESSEL VARIATION REMAL FAPILLA(E) NOT DEVELOPED AND/OR DISTENDED URETER(\$) MEMORRHAGIC RING ARGUND THE IRIS	332	8000	200	326	350	, %-00	2000	, 50	2000	2000	
MUTHER EXAMINED SKELETLY 141M RUDIENTARY REG(S) 161M RUDIENTARY REG(S) 161M RUDIENTARY REG(S) 161M RUDIENTARY REG(S) 161M RUDIENTED 161M RUDIENTED 171M CERVICAL REG(S) 171M CERVICAL REG(S) 171M RUDIENTED 171M RUDIENT	2222	380 28 28 47 47 47 47 47 47 47 47 47 47 47 47 47	707 E 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	925 25 25 25 25 25 25 25 25 25 25 25 25 2	88 8 2 2 4 4 4 4 0 0	228440-	2445044-	5 2 7 0 0 w = 0 4	52.75.55.50	× 20 4 5 € 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
REDUCED UNDSTIFTED MEDUCED OSSIFICATION OF THE RESES. MEDUCED OSSIFICATION OF THE VERTERAL AACHES STERNERALE) MALALIGHED(SLIGHT OR MODERATE) PUBIS UNDSSIFIED ENTIRE STERNEN UNOSSIFIED REDUCED OSSIFICATION OF THE SKULL	N00000	~-	000-0	~~~~~		.400000		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	^N000-00C	PM000-000	
1- 0:0 MG/KG 2- 50:50 MG/KG 3- 150:150 MG/KG 4- 150:0 MG/KG 5- 0:150 MG/KG	4- 150:0 Mg/KG 5-	150:0 MG/KG	19/KG	*	0:150 MG/KG	:				,	
* - SIGNIFICANTLY DIFFERENT FROM THE CONTROL GROUP AT THE 0.05 LEVEL USING FISHER'S EXACT TEST	.05 LE	VEL US	ING FI	SHER'S	EXACT TEST				:		:

4. Developmental Toxicity Study of Irbesartan in Rabbits (Segment II)

Study No: 311/519 (TER226)

Performing Laboratory:

Sponsor: Sanofi Recherche

Montpellier Cedex, France

<u>Initiation of Treatment</u>: 10/11/92

<u>Ouality Assurance</u>: A statement of conformance to GLPs is included.

<u>Test Animals</u>: New Zealand white rabbits (from a supplier in France), 18 females per group, were 16-18 weeks old and weighed 3.15-3.89 kg when mated.

Procedure: SR 47436 (batch 92.02) in 10% aqueous gum Arabic solution, was administered once daily by oral gavage at doses of 0, 3, 10 and 30 mg/kg, from GD 6 to GD 18. The dose volume was 5 ml/kg for each group. Mated females were observed each day for mortality and physical condition; body weight and food consumption were measured GDs 0, 6, 9, 13, 19, 24 and 29. C-sections were performed on GD 29 for a corpora lutea count, evaluation of the uterus (dead and live fetal counts, resorptions), determination of fetal and placental weights and determination of sex. All live and dead fetuses were examined for external anomalies; live fetuses were examined for visceral anomalies by a dissection technique, but the heads from half the fetuses were removed, fixed in Harrison's fluid and serially sectioned. All fetuses were cleared with KOH and stained with alizarin red for skeletal evaluation of anomalies and variations.

Justification of Dosage: An oral range-finding study was performed with 6 pregnant rabbits/group (same strain and same supplier) that received oral doses of 0, 50, 150 and 450 mg/kg/day. All 6 does/group that received doses of 150 and 450 mg/kg and 2 in the 50 mg/kg/day group were found dead or were sacrificed in moribund state before scheduled necropsy; an additional doe at 50 mg/kg/day aborted completely by GD 26 Therefore, a top dose of 30 mg/kg/day was chosen for the definitive study.

Compound Related Effects

Does:

Mortality and Clinical Signs: At 30 mg/kg/day, 3 does died between GD 17 and GD 22 (a 4th one died on GD 6 due to an

intubation error); two others were sacrificed in moribund condition on GD 23 and GD 24, and an additional 3 aborted on GDs 19, 22 and 28 (including 1 that was subsequently found dead on GD 22). Only the 2 moribund animals that were killed on GD 23 and GD 24 had clinical signs; thin, "subdued behavior" and slow breathing in one of them, red/black vaginal discharge in the other. No clinical signs were noted for the 3 high dose does that aborted. There were no other deaths or moribund sacrifices in this study. One female at 3 mg/kg/day had a dark red vaginal discharge during the last 6 days before C-section, and had no viable fetuses at C-section.

Other compound related effects: At high dose, there was a decrease in body weight and body weight gain compared to control (weight loss between GDs 9 and 19), but an apparent rebound in body weight vs control by GD 29, after discontinuation of treatment. At mid dose, there was a lower than control body weight gain from GD 9 to GD 13 (P< 0.01), but a greater than control body weight gain at low and mid doses from GD 13 to GD 19 (P< 0.01 for both groups). Between days 9 and 19 of treatment, there was a lower than control food intake at the high dose, which was statistically significant only from GD 9 to GD 13. A decrease in food intake was also observed at the mid dose between GD 9 and GD 13 (P< 0.01).

Fetuses: At the high dose, an increased incidence of early resorptions and a decreased number of live female fetuses were evident. Neither of these effects reached statistical significance, but cannot be ignored because the number of surviving dams with viable fetuses was low and standard deviations were high.

One of the nine high dose treated does with surviving litters had seven fetuses, all of which had vertebral malformations; five with acaudia (lack of a tail), which in this species may be considered a vertebral malformation. All of the vertebral (and soft tissue) malformations found at this dose were confined to the litter of this doe. The investigators claim there was no compound related effect on malformations, but with the low number of surviving fetuses and litters, it does not seem possible to rule out such a possibility at high dose.

APPEARS THIS WAY
ON ORIGINAL

FEST

---- GROUP 4 30 mg/kg 24 MEAN MATERNAL BODY WEIGHTS DURING GESTATION - FIGURE 1 -..... GROUP 3 10 mg/kg STUDY NUMBER 311/519 DAY OF GESTATION 3 mg/kg MEAN BODY WEIGHTS (g) GROUP 1 CONTROL 4500 4400 4300 4200 4100 **400** 3900 3800 3700 3600 3500 3400 3300 3200 3000 3100

311/519

SIGNIFICANTLY DIFFERENT FROM CONTROL: " - P. Means calculated excluding dams with no viab

NF 31151	30 89/Kg	25 E	3509.0 220.0 20.0 20.0	3555.6 212.6 16	3545.5 253.0	# # # # # # # # # # # # # # # # # # #	3779.3 274.0	6. 60 6. 60 60 60 60 60 60 60 60 60 60 60 60 60 6
GE) IN THE	10 89/Kg	3497.6	3552.9 4 218.4 37	3586.1 213.6 17	3615.9 217.6 17	3764.0 194.1 17	3064.9 8.99.1 1.1	3905. 8 265. 8
GY STUDY BY CRAL ROUTE (GAVAC Rabbit (SEGMENT 11). By Weichts During Gestation .	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3507.5 220.2 16	3553.2 368.3 36	3624.2 102.3 16	3688.8 182.6 16	36 8 . 6 8 . 6 16	3945.9 227.9 16	3963.8 221.3 16
SR 47416 - TERATOLOGY STUDY BY CRAL ROUTE (GAVAGE) IN THE RABELT (SEGMENT II). MEAN MATERNAL BODY WEIGHTS DURING GESTATION giers	1024	3504.3 186.2 14	192.0	3603 192.0	3718.9 186.5 14	3766.6 195.5 14	3669.1 217.7 14	3606.1 231.9 34
SR 474	DOSE LEVEL	M	B I E E E E E E E E E E E E E E E E E E	B 18 A B A B A B A B A B A B A B A B A B A	E G E	E S S S S S S S S S S S S S S S S S S S	S E S S S S S S S S S S S S S S S S S S	E 6 4 6 8 5 6 8
		DAY 0	9	6 AVG	DAT 13	DAT 19	DAY 24	DAY 29

APPEARS THIS WAY OR ORIGINAL

GO LOS COLLONION COLLONION

3 412552 533

311/519

	-					* * * * * * * * * * * * * * * * * * * *
		3044	3 / 9 g	10 19/Kg	30 mg/Rg	
		-	45.69	55.29	-1.44	
2	.0.	97.94	93.43	50° ~	130.59	
	=	-	•	•		
		62.64	71.00	33.12	18.81	
	. G . w	43.13	42.66	47.43	96.38	
_	2		91	11	2	
	1		25 77	29.82**	-10.13++	
DAYS 9 TO 13	REAR	76:111		71 15		
	. 1 n	67.24	9.0	1	16	
	E	•				
	84.58	47.64	159.31.	148.12.	-27.27	
		71.72	69.42	91.10	234.69	ANI OTHER
	=		91	1.1	18	ADDEARS ITHIS IN
	1	331	20.40	211.06	22.40	JAPI DIO IN
DATS 6 TO 19			64.65	111.34	336.99	
		-	91	1.1	S1	
			:		73.63	
DAYS 19 TO 24	HCAR	102.57		77.007	61.351	
		65.95	16	£ 1		
;			17.88	40.82	14.78	
DAYS 24 TO 29	E 4 4		75.81	69.57	02.54	
			9	1.7	•	•

BEST POSSIBLE C.

NF 311519

PAGE 1

30 mg/Rg

	24 43	136 - TERATOLOGY STUD RABBIT	SR 47436 - TERATOLOGY STUDY BY ORAL ROUTE (GAVAGE) IN THE RABBIT (SEGMENT 111).	GE) IN THE
	HEAN NJ	MEAN MATERNAL FOOD CONSUMPTION DURING GESTATION	ION DURING GESTATION	r .
	DOSE LEVEL	COSTROL	5	10
MATERNAL FOOD CONSUMPTION Gress/ANIMAL/DAY	ION GEBB/ANIMAL/	 		
DAYS 0 TO 6		134.5	145.4	130.0
		9.72	91	-
	SPILLED	:•	•	
	****	167.4	174.5	159.2
	e.	31.9	12.4	21.5
_	8717168	: •	• •	
	1	• • • • • • • • • • • • • • • • • • • •	6 . 3 .	142.200
DAYS 9 to 13	. 0.0	20.5	25.20	33.2
	E 277168	:-	-	<u> </u>
			• • • • • • • • • • • • • • • • • • • •	7
DAYS 13 TO 19	# 6 1	126.7	0 · 9 · 9	7.67
		-		1.7
	3711148	•	•	•
	= = = = = = = = = = = = = = = = = = = =	150.6	156.3	137.0
		20.2	29.9	11.3
	0311148 # :	T 8	••	•
76 00 01 0000	***	121.4	150.6	140.0
		7.7	32.7	32.4
	4871166,	-	•	•
DAYS 24 TO 29	#E 7 #	8.88	107.9	101.6
		N . N	P 1001	

APPEARS THIS WAY ON ORIGINAL

SIGNIFICANTLY DIFFERENT FROM CONTROL: " = P(0.05; ** m P(0.01.)
Nears calculated excluding dans with no viable embryos/fetuses of with no pups delivered.

	SR 4743		BY ORAL ROUTE (GAVAGE) IN THE	:) IN THE	NF 311519	
•			IT (SEGRENT II). CESAREM SECTION DATA		PAGE 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
POSE LEVEL	DOSE LEVEL	CONT) Bq/Rq	10 89/R9	30 mg/Kg	!
	: : : : : : : : : : : : : : : : : : :		•	:	•	•
Product Product	. 20	78	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 6	96	
Aberted		• •	••	••	8 7 E	
		•	• •	••	4 ° °	
Delivered Early /	E-	• •	• •	•	•••	
Pregnant at C-section		14	:		•	APPEARS THES THE ON ORIGINAL
Dame with Winble Fetures	2-	100		100		
Dans with no viable fetuses	E -	• •	7 =	• •	• •	
Corpora Lutea	# # # # # # # # # # # # # # # # # # #	4 4 4 8 4 8 4 8	10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12. 3.5 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	32.6 3.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	<u>Iabl</u>
Implestation Sites	S OF	9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	6 ar 4 P 1 ar 40 A 4 ar 4 a	10 10 10 10 10 10 10 10 10 10 10 10 10 1		Pag∈ e 4
Preimplentation Loss	# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		• • •	0.0	11.1	: 12e

a excluding a 3rd female aborted which died bectuding one dead female which was not pregnant

	•	SUMMANT OF CES.			7 894 h	•
150 0	DOSE LEVEL	CONTROL	3 BQ/RG	10 10 10	30 B4/R4	
Present at C-section		11	•1	11	•	
Resorptions: Total	8.0 8.0 8.0	₩ F. ♥ • • # • • •	61 64 65 • • • • • • • • • • • • • • • • • • •	0 d d d w u t &	7.42 8.8 8.8 8.8	
	TOTAL HEANG S.D.		9 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	e e	N 8	ADDEADS THE WAY
Recly	E O O O O O O O O O O O O O O O O O O O	φ φ φ s • • • • • •	# 0 € €	# # P #		
	H A A A A A A A A A A A A A A A A A A A	m e m e	23.3	 	■ ♥ • • • • •	
	S S S S S S S S S S S S S S S S S S S	8 6 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		9 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	କ୍ଷ୍ୟ ବର୍ଷ ଓ ଓଡ଼ିଆ ଓଡ଼ି	<u>Tat</u>
	HEAR S.D.		23.5	- •	, ,	ole 4 (
Dood Potusos	TOTAL	**	•	•		Page
postinglantstion Loss	HEAN S. D.		16.2	83. ₽9.	13.2	

·
्र हा अ ग्र
andrag Santaga Santaga Santaga
Sales Sales
en an
: - :::::::::::::::::::::::::::::::::::
e rai
ray salay
SIMILAR SIMILA
Elicentia Chi
Alliania.
Carray.
Cole
حافننا
6
Name P
and the last

##### 14 16 19 19 19 19 19 19 19 19 19 19 19 19 19	CELON IN 10		-	SURFACT OF CESAREAR SECTION DATA	SAREAR SECTION DATA		PAGE 3	
HEAM 10.9 9.4 10.1 10.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15	NEAR 14 14 15 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 19		TEAR!	CONTROL	# A M / D #	10 10/10	30 14/Kg	
HEAM 10.9 9.4 10.1 2.9 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	10.19 10.19	1		•1	=		•	
HEANN 93.7 63.6 177 9	1.3			6.91	•	10.1	6.3	
HEAN 91.7 11.6 11.6 11.6 11.6 11.6 11.6 11.6 1	91.7		.0.		- · · · · · · · · · · · · · · · · · · ·	o.,	~	
HEANN 6.4 11.1 0.3 16.8 HEANN 2.4 2.6 5.1 17.9 TOTAL 10.2 11.9 1.0 2.0 HEANN 49.1 10.5 11.6 2.0 E.D. 2.1 2.2 2.0 HEANN 2.4 2.2 2.0 HEANN 3.4 2.2 2.0 HEANN 14.2 10.5 11.6 5.0 HEANN 14.2 10.5 11.6 5.0 HEANN 14.2 10.5 11.6 5.0 HIP HEANN 14.2 10.5 11.6 5.0	91.7		TOTAL	251	170	11.1	• • •	
HEAN S.4 S.6 S.1 A.2	\$1.4 \$1.6 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0			61.7	63.6	93.1	1.90	
MEAN Sols	9.4 5.6 5.1 4.2 14 1.9 2.0 2.0 14 16 13.6 20.0 14.2 10.5 13.6 20.0 14.2 10.5 13.6 20.0 2.1 2.2 2.0 1.9 2.1 1.0 1.0 45.0 30.9 40.1 49.0 57.1 16.2 13.6 20.0 16.2 13.6 20.0 16.2 13.6 20.0 16.5 50.50 54:46	_	. Q . 9	•	# · # 6	s :	16.0	
HEAN S.4 S.6 S.1 2.0 2.0 3.0 4.2 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5.4 5.6 5.1 2.0 14 16 1.9 2.0 16.1 16.5 17 2.0 16.2 16.5 13.6 20.0 16.2 16.5 2.0 1.9 2.1 2.2 2.0 1.9 16.2 10.5 13.6 13.6 16.2 40.1 40.0 27.1 16.2 40.1 40.0 27.1 16.2 40.5 50.50 34.46 16.0.05; 10.01. 20.5 34.46		•					
HEAN 40-1 51-0 51-0 51-0 51-0 51-0 51-0 51-0 5	2.4 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	.	9.1	4.2	APPEARS INIS NO
MEAN 40.1 51.9 51.0 42.9 52.0 42.9 5.0 6.0 3	5.4 5.1 51.9 51.0 42.9 144.2 16.5 15.0 52.0 2.1 2.2 2.0 1.9 14.2 16.5 15.0 55.0 14.3 16.5 17.9 14.2 16.5 50.50 56.46		.0.	7.7	 N	6 1	~.	TALLORGO NO
HEAN 14:2 10:5 13:6 20:8 HEAN 2:1 2:2 2:0 1:9 HEAN 2:1 2:2 2:0 1:9 HEAN 30:9 40:1 49:0 20:1 HEAN 14:2 10:5 50:50 50:50	14.2 16.5 13.6 40.0 1 10.5 13.6 20.0 1 10.5 13.6 20.0 1 10.5 13.6 20.0 1 10.5 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	•	# 404 1446	. 92	::		•	
# Paper 4 (conf.) # Paper 4 (conf.) # Paper 5 (co	Table 4 (conf.d) 21.1 22.0 21.1 25.0 21.1 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0				,	•	• • • •	
HEAN S.4 5.1 2.0 3.0 3.0 3.0 3.0 3.0 3.1 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	2.1 2.2 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		# # # # # # # # # # # # # # # # # # #	-	6 S	9 19 	 	
## ### ### ### ### ### #### #### ##### ####	Table 4 (cont.d) 10.02 10.03					•		
# 1	Table 4 (cont d) 10.02 10.03	20102	3678	7.5	ed (D (> d	
TOTAL 1015 65 45 45 45 45 45 45 45 45 45 45 45 45 45	de de la contra del la contra del la contra de la contra del la contra del la contra de la contra de la contra del la cont	1	8 .0.		N		•	1
B.D. 13.6 20.9 40.1 13.6 20.0 87.1 13.6 20.0 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	14.2 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6		1017	. 96			\$	ſat
8.D. 19.6 20.0 W.F. 50:50 46:52 50:50	11.6 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0				1.61	6.67		ole
N:F 50:50 44:52 50:50	50:50 50:50 50:50 50:50 50:00 C			14.2	11.5	13.6		4 (
nt'	DO 05; ** • P(0.05; ** • P(0.01).		•		44.43	80 % 60 %	94:46	
	m P(0.05; ** = P(0.01.				•		•	

7

311/519

MF 311519

PAGE

DOSE LEVEL

Dana with Wishle Fetuses

Prognant at C-section

Resorptions: Total

APPEARS THIS WAY ON ORIGINAL

TIONETICANTEL DIFFERENT FROM CONTROL: . . P.C. 05; . . . P.C. 01.

REAM 8.0. TOTAL

Lite

TOTAL HEAN!

Eacly

TOTAL MEAN' B.D. MEAN!

TOTAL

Doed Fetures

MEAN! 8.D.

Postinglantation Loss

12i

	,	BR 47436 - TERATOLOGY STUDY BY ORAL ROUTE (GAVAGE) IN THE Rabbit (Scoment 31). Bunnary of Cesarear Section Data	IN STUDY BY ORAL MOUTE (GAVACABELT (SEGMENT II). TOP CESAREAR SECTION DATA		PAGE 5	!
7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CONTROL) 19/79	10 10/10	30 B9/R9	
	6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 1	•	11	•	
ME WITH WISHIP PATERS		•	•1	11	•	
Live Petuses	HEAR	6.01	10.6	10 2 . 9	67	
	* . b.	7 T C C C C C C C C C C C C C C C C C C	170	171	•:	
•				# F.	• • • • • • • • • • • • • • • • • • • •	APPEARS THIS WAY
		**************************************	****	# \$ 1~ W • • # 8 \$1 #	~~ · · · · · · · · · · · · · · · · · ·	UNIVERSITY OF THE PROPERTY OF
	11 A A A A A A A A A A A A A A A A A A	14.2	6. 64 8. 64	51.0 13.6	7 . 0 7 . 0 7 . 0	
	BERNA B.D. TOTAL	4 W & A & A & A & A & A & A & A & A & A &		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	**************************************	<u>Table</u>
		\$0. \$ 14.2		13.6	20.0	
Sen Ratio M:P		8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	48:52	98 : 08	34:46 F	age

•	MEAN PETAL	MEAN PETAE NUMERICAE DATA		. PAGE 1	
DOSE LEVEL	CONTROL	3 ng/Rg	10 19/Kg	30 20/Kd	
		,	:	,	
Fetuses	5.23	9.50		1.22	
.0.8	9.73		12.		
T State Address ARAR	5.37	5.36	5.15	5.27	
•		6 13	50° 50°	9.61	
of Male Peteres	3 · · · · · · · · · · · · · · · · · · ·		, e, o	1.29	
. 1		91	1.7	•	
Ceveriate Adjusted MEAN	9:5	9.46	5.22	67.5	
	•		9	9.18	
of remain fetuses MEAN			99.0	1.00	TOUR CONTRACT
. 1		9 -	. 41	•	
Coveriste Adjusted MRAN	5.19	5.34	5.04	***	
_					
GRAMS	;	:	10.63	(1.1)	
of all viable fetuses MEAN	79.00	90.50	8.0	7.29	
		91	1.1		
Coveriate Adjusted MEAN	39.12	••••	19.41	39.24	
	10.70	40.35	39.63	41.64	
		5.17	6 1.9	7.64	
	=	2	11		
Coveriate Adjusted MEAN	19.67	41.06	39.42		
	7	37.00	19.12	39.12	•
of Temale Telebon		90.9	5.50	6.28	-
	7	27	1.7		
_	90.00	30.49	36.00	37.51	1

SR 47436 - TERATOLOGY STUDY IN RABBITS (Segment II)

RESULTS OF EXTERNAL, VISCERAL AND SKELETAL EXAMINATIONS OF FETUSES

Summary of External Anomalies	(Stu	idy 31	1/519)	
Dose Level (mg/kg/day)	00	03	10	30
Litters Evaluated	14	16	17	9
Fetuses Evaluated	153	170	71	83
Fetal Incidence of Malformations	1 1	0	1	5
Litter Incidence of Malformations		0	1	1
Fetal Incidence of Variations	1	0	1	0
Litter Incidence of Variations	1	0		0
Fetal Incidence of Incidentals	0	0	0	0
Litter Incidence of Incidentals	0	0	0	

Malformations consisted of gastroschisis (1 fetus @ 10 mg/kg), acaudia (1 fetus @ 10 mg/kg, 5 (from 1 litter) @ 30 mg/kg, and open eyes (1 control fetus). **Variations** consisted of slightly flexed forelimbs (1 control fetus) and slightly flexed hindlimbs (1 fetus @ 10 mg/kg).

AT PENRS THIS WAY

APPEARS THIS WAY

Summary	of	Soft	Tissue	Anomalies	of	Body	(Study	311/	'519)
---------	----	------	--------	-----------	----	------	--------	------	-------

Dose Level (mg/kg/day)	00	03	10	30
Litters Evaluated Fetuses Evaluated	14 152	16 170		9 83
Fetal Incidence of Malformations Litter Incidence of Malformations	0 0	0	0 •	- 0 Q
Fetal Incidence of Variations Litter Incidence of Variations	1	0	1 1	0 0
Fetal Incidence of Incidentals Litter Incidence of Incidentals	1	12 4	3 3	1
Summary of Soft Tissue Anomalies of	Head	(Study	311/5	519)
Dose Level (mg/kg/day)	00	03	10	30
Litters Evaluated Fetuses Evaluated	14 72	16 81	17 81	9 39
Fetal Incidence of Malformations Litter Incidence of Malformations	1	0 0	1 1	0 0
Fetal Incidence of Variations	4	4	3	2

Litter Incidence of Variations

Fetal Incidence of Incidentals

Litter Incidence of Incidentals

Malformations consisted of malformed eyes (1 control fetus) and internal hydrocephaly of brain (1 fetus @ 10 mg/kg). Variations consisted of incompletely inflated lungs (1 control fetus and 1 @ 10 mg/kg), vacuole in the medulla of the brain (2 fetuses/1 litter from control group, 2 fetuses/1 litter @ 3 mg/kg, and 3 fetuses/3 litters @ 10 mg/kg) and dilated ventricles of brain (2 fetuses/1 litter from control group, 2 fetuses/1 litter @ 3 mg/kg and 2 fetuses/2 litters @ 30 mg/kg. (The ventricular and medullary variations at the high dose occurred in the same 2 fetuses.) Incidentals consisted of dark lungs (1 fetus/1 litter for all groups but 3 mg/kg group where incidence was 10 fetuses/2 litters) and reduced or absent azygous lobe of lung (2 additional fetuses/2 additional litters @ 3 mg/kg, 2 additional fetuses/2 additional litters @ 10 mg/kg).

2

0

0

0

0

Summary of Skeletal Anomalies of B	ody	(Study	311/5	19)
Dose Level (mg/kg/day)	00	03	10	30
Litters Evaluated Fetuses Evaluated	14 152	16 170		
Fetal Incidence of Malformations Litter Incidence of Malformations	1 1	2 2	1 .	- 7 1
Fetal Incidence of Variations Litter Incidence of Variations	106 14	119 16	94 16	66 9
Fetal Incidence of Incidentals Litter Incidence of Incidentals	58 13	55 14	65 15	37 8
Summary of Skeletal Anomalies of H	ead	(Study	311/5	19)
Summary of Skeletal Anomalies of H	ead 00	(Study 03	•	1 9) 30
-		03	10 17	-
Dose Level (mg/kg/day) Litters Evaluated	00 14	03	10 17	30 9
Dose Level (mg/kg/day) Litters Evaluated Fetuses Evaluated Fetal Incidence of Malformations	00 14 80 0	03 16 89	10 17 90	30 9 44 0

Malformations consisted of malformed vertebrae (1 control fetus, 2 fetuses from 2 litters @ 3 mg/kg, 1 fetus @ 10 mg/kg, and 4 fetuses from 1 litter @ 30 mg/kg), acaudia (1 fetus @ 3mg/kg and 5 from 1 litter @ 30 mg/kg) and malformed ribs (1 fetus @ 3 mg/kg and 2 fetuses from 1 litter @ 30 mg/kg). Variations involved vertebra (incomplete ossification, misshapen, minor displacement or minor fusion), scapulae (irregular ossification), limbs (incomplete ossification of tarsals or phalanges), sternebrae (bipartite or asymetric or incomplete ossification), pelvis (incomplete or absence of ossification), ribs (bifid), hyoid (misshapen or incompletely ossified), zygomatic arch (incompletely ossified) and cranium (depressed). None of the variations showed incidence related to drug treatment. Incidentals consisted of incomplete or unossified sternebrae and incompletely ossified metacarpals. None of the incidentals showed incidence related to drug treatment.

5. Late Gestation and Lactation Study of Irbesartan in Rats (Segment III)

Study Reference: LSR:SNF034 - Sanofi:DPN235

Performing Laboratory:

Sponsor: Sanofi Recherche

Montpellier Cedex, France

Initiation of Treatment: 6/14/93

Quality Assurance: A statement of conformance to GLPs is included.

Test Animals: Charles River CD rats (from Charles River, UK), 22 mated females per group, were 10-11 weeks old and weighed 226-293 g at initiation of the study.

Procedure: SR 47436 (Batch 93.04) in 10% gum Arabic (w/v) vehicle, was administered once daily by oral gavage between GD 15 and PPD 24 at doses of 0 (vehicle control), 50, 180 and 650 mg/kg/day. The dose volume was 10 ml/kg for each group. Prenatal observations of F₀ dams included mortality, physical signs, body weight and feed consumption measurements. Neonatal and postnatal observations included parturition, duration of pregnancy, body weight and feed consumption of dams, mortality, litter size, weight, sex and appearance of pups. On PPD 4, litters were randomly culled to 8 (4/sex if possible). F_1 pup weights were obtained on PPDs 1, 4, 7, 14, 18, 21 and 25. Post weaning, pups were examined on day 25 for visual and auditory function; on days 26-27 for activity, on day 27 for learning in a water filled maze, on day 28-30 for neuromuscular function (6 different tests). Pups were further examined for physical developmental signs (time to pinna unfolding, hair growth, eye opening, tooth eruption, testes descent and vaginal opening). Fo females were killed and macroscopically examined after weaning.

At 9 to 10 weeks of age 20 F_1 males and 20 F_1 females (1 male and 1 female per litter where possible) were paired (1 male to 1 female within treatment groups) for mating. Mated females were killed on GD 20 for corpora lutea count and examination of uterine contents, including implantation and resorption sites; fetal and placental weights, and sex and external abnormalities of fetuses were determined. Males were also killed at around the time of C-section, and both the males and C-sectioned females were examined for macroscopic abnormalities. F_1 offspring not selected for evaluation of reproductive performance were weighed at weekly intervals, killed at 8 weeks of age and examined for macroscopic abnormalities.

Evaluation of Fo Dams

One dam at 650 mg/kg/day was found dead on PPD 13, and one dam at 180 mg/kg/day was found dead just after parturition on PPD 1. Although cause of death was not determined, neither death was considered to be compound related.

During gestation, there were no treatment related effects on mean body weight, although mean food consumption was slightly (significantly) less than control in all 3 treated groups on GDs 18 and 19 (not dose related). During lactation, mean body weight of high dose dams tended to be slightly lower than control between PPDs 4 and 18 (P< 0.05 only on PPDs 4 and 5). Mean food consumption during lactation was slightly but significantly decreased at mid and high doses between PPDs 7 and 10 and PPDs 11 and 14, but there was no dose-relationship. There were no cases of dystocia reported in this study and gestation length appeared to be unaffected by treatment.

Evaluation of F₁ Pups

Body weights of F₁ male and female pups in all three treated groups were slightly lower than control on PPD 1 (n.s.) and remained slightly lower throughout lactation; the differences became statistically significant and dose related for both sexes on PPD 25. In animals selected for observation of mating performance (sacrificed at 15 weeks of age), body weights of males in the 3 treated groups tended to be lower than control, but there was no dose relationship. Postnatal survival, physical and functional development (including reproductive function) were unaffected by treatment.

TUBELLUS THIS MAY

APPEARS THUS WAY

TABLE 1
Summary of mortality (F_o)

Group	:	1	2	3	4
Compound		Control		SR 47436	
Dosage (mg/kg/day)	:	. 0	50	180	650

				<u> </u>
	sex	Animal number	History and circumstances of death	Summary of necropsy findings
3	F	1060	Found dead on Day 22 of gestation, after parturition, before Day 1 of lactation.	External: Fur stained red around mouth and urogenital area. Internal: Stomach
•			APPEARS THIS WAY ON GRISHEST	contents slightly gaseous. All abdominal organs slightly autolysed.
4	F	1071	Found dead on Day 13 of lactation.	External: Both pupils constricted, cyanosis of all extremities and all nipples reddened. Internal: Large amount of
			ON ORIGINAL	red serous fluid and small amount of pale caseous materal free in thoracic cavity. All lung lobes severely congested. Stomach contents gaseous. All internal organs slightly autolysed.

APPEARS THIS WAY ON ORIGINAL

TABLE 2 Group mean bodyweights (g) of females during gestation (F_0-F_1)

Group : 1 2 3 4 Compound : Control --- SR 47436 ---Dosage (mg/kg/day) : 0 50 180 650

	··-									•	
Group					D	ay of	gestat	ion			
·		0	5	10	15	16	17	18	19	20	21
1	Mean	253	293	326	365	375	390	407	426	447	460
	SD	17	17	21	23	24	23	24	27	30	33
	n	22	22	22	22	22	22	22	22	22	22
2	Mean	253	292	324	365	375	388	403	419	437	454
	SD	13	13	15	18	18	19	17	18	18	18
	n	22	22	22	22	22	22	22	22	22	22
3	Mean	251	290	325	364	376	390	404	422	441	458
	SD	14	19	18	22	21	21	19	22	23	25
	n	22	22	22	22	22	22	22	22	22	22
4	Mean	248	287	321	361	373	387	401	416	436	453
	SD	15	17	22	26	26	27	27	28	28	31
	n	22	22	22	22	22	22	22	22	22	22

SD Standard deviation.

Number of animals.

FREE CAS THIS WAY

APREARS THIS WAY
ON ORIGINAL

AT MAN THIS WAY ON DRIVINGE

Page 14c

TABLE 3 Group mean food consumption (g/rat/day) of females during gestation (Fo-Fi)

Group 1 Compound : Control ---- SR 47436 ----Dosage (mg/kg/day) 0 50 180 650

Group				Days of	gestation		
ar oup		0-2	3-6	7-10	11-14	15-17	18-19
1	Mean	28	30	32	33	35	33
	SD	3	3	3	3	3	4
	n	22	22	22	22	22	22
2	Mean	27	29	31	33	32ª	29 ^c
	SD	2	3	3	3	2	2
	n	22	22	22	22	22	22
3	Mean	27	30	32	32	33	30 ^a
	SD	3	3	3	4	3	4
	n	22	22	22	22	22	22
4	Mean	28	30	33	34	34	29 ^c
	SD	3	3	3	3	3	3
	n	22	22	22	22	22	22

Standard deviation.

APPEARS THIS WAY ON OPIGILIAL

APPEARS THIS WAY ON ORIGINAL

n Number of pregnant animals.

Significantly different from Controls: a - p<0.05; c - p<0.001, (t-test following one-way analysis of variance).

TABLE 4 Gestation length and gestation index (F_0-F_1)

Group : 1 2 3 4
Compound : Control --- SR 47436 --Dosage (mg/kg/day) : 0 50 180 650

Group	Number of pregnant		Gest	ation 1	ength (days)	Number of live	•
	animals		22	22}	23	23 1	litters born	Gestation index (%)
1	22	n (%)	(9)	11 (50)	7 (32)	2 (9)	22	100
2	22	n (%)	3 (14)	13 (59)	5 (23)	1 (5)	22	100
3	22	n (%)	3 (14)	18 (82)	(5)	0	22°	100
4	22	n (%)	1 (5)	14 (64)	6 (27)	1 (5)	22	100

n Number of animals in category.

Includes one female found dead after parturition before Day 1 of lactation.

Gestation index was calculated as:

Number of live litters born x 100

APRETES THIS WAY

APPEARS THIS WAY
OF CAROLISE

APPLAND THE

TABLE 5

Group mean bodyweights (g) of females during lactation (Fo-Fi)

: Control Group Compound Dosage (mg/kg/day) :

Ash Sill Sandly

ן ניי							Day	of	lactation					
		-	2	9	+	5	9	7	8	6	10	=	12	13
-	Mean SD	337 28 22	336 25 22	341 26 22	346 26 22	352 27 22	350 26 22	350 23 22	356 25 22	361 26 22	366 28 22	370 29 22	373 29 22	378 28 22
2	Mean SD n	337 21 22	339 20 22	340	344 18 22	349 18 22	347	348 18 22	350 17 22	357 18 22	362 19 22	366 19 22	369 17 22	373 17 22
m	Mean SD n	339 19 21	344 22 21	346 23 21	350 22 21	356 22 21	354 24 21	352 23 21	357 24 21	361 23 21	364 22 21	368 20 21	371	376 21 21
₹.	Mean SD n	338 28 22	342 26 22	338 24 	338a 24 22	342a 24 22	342 23 22	342 22 22	346 24 22	349 23 22	355 23 22	357 25 22	362	368 /24 /24

SD Standard deviation. n Number of animals. Significantly different from Controls: a - p<0.05, (t-test following one-way analysis of variance).

APPEAR HISTORY

APPETES TOWN THE ONLY OF THE OWNER OWNER OF THE OWNER OWNER

TABLE 5 - continued

Group 14 15 16 17 18 19 20 21 22 23 24 25 25 22 22 22 22 22	Group Compound Dosage (ınd : (mg/kg/c	•• •• ••	: 1 2 3 4 : Control SR 47436	200	3 SR 47436 180	36					5	· mga	187751710	
1 Hean 381 380 382 379 386 375 375 372 365 355 35 35 35 35 35 35 35 35 35 35 35 3	9							Day of	lactat	lon					
1 Hean 381 380 382 379 386 375 375 365 365 362 355 362 355 362 315 315 315 315 315 315 315 315 315 315			=	15	16	17	18	19	20	21	22	23	24	25	
374 376 376 383 380 383 377 368 361 356 19 20 20 20 21 21 18 17 18 22 <td>-</td> <td>Mean</td> <td>381</td> <td>380</td> <td>382</td> <td>379 28</td> <td>386</td> <td>375</td> <td>375</td> <td>372</td> <td>365</td> <td>362</td> <td>355</td> <td>353</td> <td>1</td>	-	Mean	381	380	382	379 28	386	375	375	372	365	362	355	353	1
2 Mean 374 376 376 383 380 383 377 368 361 356 50 19 20 20 20 21 21 18 22 18 17 18 19 20 20 20 21 21 18 22 22 22 22 22 22 22 22 22 22 22 22 2		} = ,	22	22	55	22	22	22	22	22	22	22	22	22	
3 Mean 379 378 381 378 386 382 381 380 376 363 22 22 22 22 23 22 24 21 23 23 23 23 22 24 21 23 23 22 24 21 23 23 23 23 23 23 23 23 23 23 23 23 23	7	Mean	374	376	376	376	383	380	383	377	368	361	356	352	1
3 Mean 379 378 381 378 386 382 381 380 376 369 363 SD 23 23 23 29 19 19 22 23 22 24 21 21 23 21		, E	22	22	22	22	22	22	75 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76	22	18 22	22	18	17	
4 Mean 372 371 374 372 378 377 374 368 360 355	3	Mean	379	378	381	378	386	382	381	380	376	369	363	359	
4 Mean 372 371 374 372 378 378 377 374 368 360 355 SD 24 23 24 23 26 26 29 28 26 26 25 25 25 25 21 21 21 21 21 21 21 21 21 21 21 21 21		<u> </u>	នុឌ	22	53	21	21	22	23	22	27	22	23	ឧដ	
Standard deviation.	-		372	371	374	372	378	378	377	374	368	360	355	355	-!
Standard C Number of			52	22	21	212	22 27	28	23	28	21	26 21	25	29 21	
			t ton.		-										ł

APPERAS THIS YES ON ON ORICHEST

TABLE 6

Group mean food consumption (g/rat/day) of females during lactation (Fo-Fi)

Compound : Control ---- SR 47436 ----Dosage (mg/kg/day) 50 180

Group				Days	of lact	ation		
		1-3	4-6	7-10	11-13	14-17A	18-20 ^A	21-24 ^A
1	Mean	38	45	61	71	75	87	106
	SD	8	7	8	9	10	15	18
	n	22	22	22	22	22	22	22
2	Mean	37	44	58	68	72	86	102
	SD	6	4	8	5	6	8	8
	n	22	22	22	22	22	22	22
3	Mean	37	42	56ª	65 ^b	72	86	102
	SD	4	5	4	8	7	9	9
	n	21	21	21	21	21	21	21
4	Mean	34	41	55 ^b	66 ^a	71	84	104
	SD	5	4	4	5	4	8	8
	n	22	22	22	21	21	21	21

Includes diet consumed by offspring. Standard deviation.

SD Number of animals.

Significantly different from Controls: a - p<0.05; b - p<0.01, (t-test following one-way analysis of variance).

Appropriate way

APPEAS THIS WAY

TABLE 7

Group mean litter sizes (F.)

2 3 4 ---- SR 47436 ----50 180 650 Control Group Compound Dosage (mg/kg/day)

AVE SEE SO COLOR

							Day	Day of age				
e e		Implant-	Total	Before	culling			After	er culling	bu		
		sites	Day 1	1	4	4	1	=	14	18	21	52
-	Mean SD	17.6 1.8 22	15.6 22.3	15.6 2.3 22	15.1 3.5 22	7.8 1.1 22	7.6	7.6	7.6	7.6	7.6	7.6
~	Mean SD c	16.7 2.1 22	15.5 2.3 22	15.4 2.3 22	15.3 2.3 22	8.0 0.0 22	8.0 0.0 22	8.0 0.0 22	8.0 0.0 22	8.0 0.0 22	8.0 0.2 22	8.0 0.2 22
· m	Mean SD n	17.4 1.6 22	16.0 1.4 21	16.0 1.4 21	15.7 1.6 21	8.0 0.0 21	7.9 0.3 21	7.9 0.3 21	7.9	7.9 0.5 21	7.9	7.9
4	Mean SD n	16.8 1.9 22	14.7 2.4 22	14.7 2.4 22	14.6 2.4 22	8.0 0.0 22	8.0 0.2 22	8.0 0.2 22	8.0 0.0 21	8.0 0.0 21	/8.0 0.0 21	8.0 0.0 21

Standard deviation. Number of litters. S =

Report 94/0198

TABLE 8
Offspring survival indices (F1)

Group : 1 2 3 4
Compound : Control ---- SR 47436 ---Dosage (mg/kg/day) : 0 50 180 650

Group	Post- implantation survival index	Live birth index	Viability index (%)				on in ay of		
	(%)	(%)	Day 4	7	11	14	18	21	25
1	89	100	97	98	98	98	98	98	98
2	92	99	100	100	100	100	100	99	99
3†	92	100	98	99	99	98	98	98	98
40	87	100	99	99	99	100	100	100	100

[†] Excludes one litter for which the dam was found dead.

<u>Post-implantation survival index</u> was calculated as:

Number of offspring at Day 1 of age x 100 Number of uterine implantation sites

Live birth index was calculated as:

Number of live offspring at Day 1 of age x 100 Total number of offspring at Day 1 of age

Viability index was calculated as:

Number of live offspring at Day 4 before culling x 100 Number of live offspring at Day 1 of age

<u>Lactation index was</u> calculated for each group on Days 7, 11, 14, 18, 21 and 25 of age as:

Number of live offspring at day of examination x 100 Number of live offspring at Day 4 after culling

APPEARS THE WAY ON OHOUSE HE

² Lactation indices on Days 14-25 exclude one litter for which the dam was found dead.

· -	
t. 🚅	
	-
- *-	
i	
-	- e
	-
•	
	S. 18
	. 1
ŕ	1 6 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5000	
144	
	• '
:	
:	
:	
:	
:	
:	

	Number alive at Day 25 of age	Ratio	1.05	1:1.01	1:1.01	1:1.00
	r al i	Ra	Ξ		Ξ	
	umber Day 2	L	82 86 1:1.05	88	83	84
	at	Σ	85	81	85	8
	ly 4 of age After culling	Ratio	1:1.04	1:1.00	1:1.00	1:1.00
	f of ter c	L	84 87	88	84	88
	t Day	æ	84	88	84	88
- -	Number alive at Day 4 of age Before culling After cull	F Ratio	145 188 1:1.30	1:1.07	1:0.96	176 145 1:0.82
	Number Fore c	ш.	188	174	162	145
	Be	Σ	145	163	168	176
2 3 4 1 SR 47436 50 180 650	Number alive at Day 1 of age	Ratio	151 193 1:1.28	1:1.06	1:0.95	1:0.84
SR	lumber Day 1	ı	193	174	172 164	176 147 1:0.84
2 50	at	=	151	164	172	176
Control	Total at Day 1 of age	Ratio	∞	1:1.06	1:0.95	1:0.84
	tal a		151 193 1:1.2	175 1		
g/da)	To Day		1 19	5 17	172 164	176 147
J (mg/k		=	15	165	17	11
Group Compound Dosage (mg/kg/day)	Group	3	-	8	ო	-

Sex ratios (Fi)

TABLE 9

TABLE 10

Group mean bodyweights (g) of male offspring (F₁)

Group : 1 2 3 4
Compound : Control ---- SR 47436 ---Dosage (mg/kg/day) : 0 50 180 650

									~	
					Day of	age				
Group		Before	culling			Afte	r cull	ing		
ar oup		1	4	4	7	11	14	18	21	25
1	Mean	7.0	10.0	10.1	16.6	27.4	36.2	47.5	59.3	83.7
	SD	0.6	1.1	1.1	2.0	2.9	3.2	3.9	4.9	6.4
	n	22	21	21	21	21	21	21	21	21
2	Mean	6.7	9.3	9.4	15.1	24.5	32.2	42.2	52.4	76.2 ^t
	SD	0.6	1.1	1.0	1.7	2.6	3.1	3.9	4.9	6.5
	n	22	22	22	22	22	22	22	22	22
3	Mean	6.5	8.7	8.9	14.5	23.6	31.7	42.5	52.5	73.9 ⁰
	SD	0.6	1.0	1.0	2.1	3.1	3.5	3.8	5.5	9.4
	n	21	21	21	21	21	21	21	21	21
4	Mean	6.8	9.3	9.5	15.0	24.1	31.7	41.7	50.7	73.2 ⁰
	SD	0.6	1.1	1.0	1.8	2.4	2.7	3.4	5.1	6.9
	n	22	22	22	22	22	21	21	21	21

SD Standard deviation. n Number of litters.

Bodyweight gain from Day 1 significant when compared with Controls: b - p<0.01; c - p<0.001, (t-test following one-way analysis of variance).

TPPT treated

FRETZER TO 15 NO

TABLE 11

Group mean bodyweights (g) of female offspring (F₁)

Group : 1 2 3 4
Compound : Control ---- SR 47436 ---Dosage (mg/kg/day) : 0 50 180 650

					Day of	age				
Casus		Before	culling			Afte	r cull	ing		
Group		1	4	4	7	11	14	18	21	25
1	Mean	6.6	9.5	9.6	15.9	26.4	35.0	45.7	56.8	78.9
	SD	0.6	1.1	1.1	2.1	2.7	3.1	3.8	5.0	6.5
	n	22	22	22	22	22	22	22	22	22
2	Mean	6.5	8.9	9.1	14.6	23.9	31.7	41.5	51.5	73.8ª
	SD	0.6	1.1	1.1	1.6	2.4	2.9	3.7	5.1	6.7
	n	22	22	22	22	22	22	22	22	22
3	Mean	6.1	8.3	8.4	13.6	22.6	30.2	40.3	49.9	70.5 ^c
	SD	0.5	1.1	1.1	2.0	3.4	4.0	4.5	6.2	8.1
	n	21	21	21	21	21	21	21	21	21
4	Mean	6.5	9.0	9.0	14.3	23.0	30.3	39.7	48.5	69.6 ^c
	SD	0.7	1.1	1.0	1.6	2.3	2.5	3.4	5.1	7.5
	n	22	22	22	22	22	21	21	21	21

SD Standard deviation.

EDDLADE STORM OF ALL

Fretzer ; w

Number of litters.

Bodyweight gain from Day 1 significant when compared with Controls: a - p<0.05; c - p<0.001, (t-test following one-way analysis of variance).

B. TISSUE DISTRIBUTION STUDIES

1. Tissue Distribution of Irbesartan in Pregnant Rats

In this tissue distribution study at Sanofi Research Laboratories in France, performed between 12/94 and 7/95 (Study No. DIS0174, Report No. RS0005951108/01), a single oral dose of 150 mg/kg 14Clabeled Irbesartan (batch no. 4SNP017) as a suspension in 10% gum arabic solution, was administered to 12 overnight fasted female Sprague-Dawley rats on GD 11 (embryo-organogenesis stage) and another 12 on GD 18 (fetal stage). Animals weighed between 261 and 325 g on GD 11, and between 320 and 369 g on GD 18. Blood samples were obtained at 2, 8, 24 and 48 hours after dosing (3 rat/sampling time). Whole body sagittal sections were obtained from the same animals, sacrificed and deep frozen, for determination of tissue distribution by means of qualitative and quantitative autoradioluminography. During sectioning, aliquots of selected organs were excised. Quantitative determinations of radioactivity in blood, plasma and the selected excised tissues were performed by liquid scintillation counting. Quantitative tissue distribution data shown below is based on qualitative and quantitative radioluminography.

Although tissue levels in virtually all organs were lower on GD 18 than on GD 11, the investigators concluded that there were no major differences in maternal tissue concentrations between these two days of gestation. Highest concentrations in maternal tissues and fetus (including fetal organs on GD 18), on both days of pregnancy, were found at the 2 hour sampling time. The level of radioactivity at all time periods was higher in maternal tissues and placenta than in the embryo, fetus or fetal tissues, except for fetal gut at 48 hours. Substantial levels of radioactivity persisted, in maternal liver and in fetal gut, to 48 hours after dosing.

VAR 2000 2000 CA

BEST POSSIBLE COPY

Page 15a

Qualitative tissue distribution in embryo area (3 animals/sampling time)

. Day 11 of gestation

Time	Organs in embryonic area
2 h	maternal blood > placenta, uterus and/or embryonic appendices> embryo, amniotic fluid
8 h	placenta, uterus and/or embryonic appendices = maternal blood > embryo
24 h	not detected
48 h	not detected

Radioactivity levels at 2 hours were superior to those at 8 hours

. Day 18 of gestation

Time	Organs in fetal area
2 h	placenta, maternal blood > fetus (fetal liver > fetal brain)
8 h	placenta, uterus > fetus > amniotic fluid
24 h	not detected
48 h	fetal gut

Quantitative tissue distribution (mean values expressed as mg Eq./kg of tissue \pm standard deviations; n = 3 animals per time point excepted when indicated between brackets)

. Day 11 of gestation

Tissue	Ct ₁	Ct ₂	Ct ₁ /Cp	Ctz/Cp
Plasma	133.76 ± 18.10	10.46 ± 10.13	1.00 ± 0.00	1.00 ± 0.00
Blood	78.46 ± 15.49	7.05 ± 5.82	0.59 ± .010	0.74 ± 0.15
Brain	2.46 (n = 2)	UDL	0.02(n=2)	
Kidney	86.67 ± 1.58	23.91 ± 8.52	0.66 ± 0.08	3.32 ± 1.81
Liver	179.81 ± 24.44	96.98 ± 16.09	1.35 ±0.13	14.74 ± 8.89
Muscle	15.71 ± 3.04	2.56 (n = 1)	0.12 ± 0.01	0.32 (n = 2)
Mammary gland	30.28 ± 2.33	5.38 ± 2.46	0.23 ± .01	0.79 ± 0.66
Ovary	43.10 ± 1.74	6.30 ± 2.20	0.33 ± 0.04	0. 0.59
Uterus	68.13 (n = 2)	9.26 (n = 2)	055 (n = 2)	0.68 (n = 2)
Placenta	51.80 ± 7.83	7.78 (n = 2)	0.39 ± 0.01	0.81 (n = 2)
Embryo	7.64 ± 3.21	3.74 (n = 2)	0.06 ± 0.02	0.53 (n = 2)

Day 18 of gestation

Tissue	Ct1	Ct2	Ct1/Cp_	Ct2/Cp
Plasma	70.95 ± 16.59	17.91 ± 18.47	1.00 ± 0.00	1.00 ± 0.00
Blood	48.82 ± 15.68	14.48 ± 11.93	0.68 ± 0.16	1.04 ± 0.39
Brain	3.27 (n = 2)	2.76 (n = 1)	0.05 (n = 2)	0.07 (n = 1)
Kidney	62.66 ± 16.62	31.54 ± 16.06	0.88 ± 0.13	3.20 ± 2.59
Liver	175.92 ± 29.91	134.46 ± 32.42	2.54 ± 0.57	15.97 ± 14.25
Muscle	12.06 ± 5.59	5.02 (n = 1)	0.16 ± 0.04	0.13 (n = 1)
Mammary gland	17.55 ± 4.30	7.22 (n = 1)	0.25 ± 0.00	0.19 (n = 1)
Очагу	30.23 ± 10.33	20.38 (n = 1)	0.42 ± 0.05	0.53 (n = 1)
Uterus	46.97 ± 9.18	14.61 ± 7.11	0.67 ± 0.07	1.99 ± 2.43
Amniotic fluid	2.88 (n = 2)	UDL	0.04 (n = 2)	
Placenta	34.47 ± 7.85	7.97 ± 5.23	0.49 ± 0.08	0.72 ± 0.51
Fetal brain	3.19 (n = 1)	UDL	0.05 (n = 1)	
Fetal liver	11.62 (n = 2)	6.89 (n = 2)	0.15 (n = 2)	0.32 (n = 1)
Fetus	6.85 ± 1.60	5.39 ± 2.11	0.10 ± 0.01	0.61 ± 0.55

LOD: 2.63 mg Eq./kg LOQ: 8.77 mg Eq./kg UDL: under detection limit

 $Ct_1 = 2$ hours after dosing $Ct_2 = 8$ hours after dosing

Cp = maternal plasma concentration

2. Tissue Distribution of Irbersartan in Pregnant Rabbits

In this tissue distribution study at Sanofi Research Laboratories in France, performed between 3/95 and 11/95 (Study No. DIS0175, Report No. RS0005951204/01), a single oral dose of 10 mg/kg ¹⁴C-labeled Irbesartan (batch no. 93-06) as a suspension in 198 gum arabic solution, was administered to 12 overnight fasted New Zealand rabbits (body weights of 3.3-4.9 kg) on GD 28 (fetal stage). Blood samples were obtained from the marginal ear vein at 2, 8, 24 and 48 hours after dosing (3 rabbits/sampling time). Whole body sagittal sections were obtained from the same animals, sacrificed and frozen after blood sampling, for qualitative and quantitative determination of tissue distribution by means of autoradioluminography. Quantitative determinations of radioactivity in blood, plasma and blood cells, were performed by liquid scintillation counting.

Radioactivity levels in maternal tissues, at all time periods after dosing, were often only slightly above the limit of quantification (stated as 1.002 mg Eq/kg). With the exception of blood, plasma and uterus, maternal tissue levels were determined only by qualitative nuclear image analysis. For the whole fetus, radioactivity at 2 to 24 hours after dosing was around the limit of detection (stated as 0.3 mg Eq/kg) and under the limit of quantification. Also fetal data at 2 and 24 hours after dosing are based on only one fetus.

At 2 hours after dosing, concentrations in the whole fetus and in fetal organs were lower than in maternal blood, plasma and uterus, and lower than in the placenta and chorion. In maternal tissues (blood and uterus) and plasma, the concentrations of radioactivity were highest at 2 hours and became progressively lower with increasing time. In contrast, the concentrations found in the whole fetus, fetal gall bladder, liver, gastric and gut contents persisted or became even higher at 8 and 24 hours after dosing. By 48 hours, fetal gall bladder concentrations were remarkably high, and radioactivity derived from the drug was still present in fetal gastric and gut contents.

The investigators claimed that the high concentrations in the fetal gall bladder and gut resulted from accumulation due to biliary excretion. Nevertheless, the sponsor concluded that the transfer of drug to fetal tissue was small; "Only trace amounts of Irbesartan were found in the fetus", and the radioactivity was mainly present in the digestive tract and liver.

• Qualitative nuclear image analysis

Time	Tissues
2 hours	gastric, gut contents > bile > liver > myocardium > lung > kidney
	> adrenals > blood > salivary glands > bone marrow, mammary
	gland > placenta > fetus > brain
8 hours	gut content > gastric content > bile > liver > kidney > blood >
	lung > placenta > myocardium > mammary gland > fetuses > brain
24 hours	gastric, gut contents > bile > kidney > liver > lung > blood >
	fetuses
48 hours	gastric, gut contents > bile > liver > fetuses

• Quantitative tissue distribution

* Maternal tissue concentrations in pregnant rabbits on day 28 of pregnancy (results expressed as mg Eq. SR 47436/kg of tissue \pm standard deviations; n=3 animals per time point excepted when indicated between brackets)

Tissue	2h	8h	24h	48h
Plasma	3.62 ± 0.91	1.27 ± 0.13	0.09 ± 0.06	0.04 ± 0.01
Blood	2.15 ± 0.58	0.86 ± 0.17	0.15 ± 0.06	0.08 ± 0.00
Blood cells	0.88 ± 0.12	0.59 ± 0.25	0.51 ± 0.11	0.37 ± 0.16
Uterus	2.44 (n = 2)	0.79 ± 0.11	ND	ND

ND: Not Detectable

* Placental and fetal unit concentrations in fetuses on day 28 of pregnancy (results expressed as mg Eq. SR 47436/kg of tissue \pm standard deviations; n = 3 animals per time point excepted when indicated between brackets)

Tissue	2h	8h	24b	48h
Placenta	1.77 ± 0.60	0.82 ± 0.29	UDL	UDL
Chorion	1.79 (n = 2)	1.48 ± 0.40	0.47 (n = 1)	ND
Whole fetus	0.37 (n = 1)	0.40 (n = 2)	0.32 (n = 1)	UDL
Brain	UDL	UDL	UDL	UDL
Fetal gall bladder	ND	5.33 (n = 1)	17.21 ± 6.78	43.53 ± 16.37
Fetal gastric content	UDL	0.94 ± 0.38	0.86 ± 0.23	0.54 (n = 2)
Fetal gut content	ND	2.67 ± 1.97	4.03 (n = 2)	1.26 ± 0.96
Fetal liver	0.40 ± 0.04	0.50 ± 0.05	0.42 ± 0.02	UDL
Fetal lung	UDL	UDL	UDL	UDL

LOD: 0.30 mg Eq./kg; LOQ: 1.00 mg Eq./kg; UDL: under detection limit ND: Not Detectable

* Ratio of concentrations fetal tissue to maternal plasma

Tissue	2h	8h	24h	48h
Whole fetus	0.10 (n =	0.30 (n =	5.71 (n =	•
.,	1)	2)	1)	
Liver	0.12±	0.39 ±	6.27 ±	•
	0.02	0.01	3.19	
Gastric	-	0.74 ±	11.54 ±	17.67 (n :
content		0.33	3.84	2)
Gut content	-	2.01 ±	40.90 (n =	36.91 ±
		1.26	2)	32.43
Gall bladder	•	4.43 (n =	225 ± 84	1310 ±
		1)		780
Placenta	0.50 ±	0.63 ±	•	•
	0.13	0.16		

3. Excretion of Irbesartan into Milk of Rats

In a study designed to determine the transfer of drug to nursing pups (performed at Sanofi Research Laboratories in France between 1/96 and 3/96), a single oral dose of 180 mg/kg ¹⁴C-labeled Irbesartan (batch 4SNP017) in 10% aqueous gum arabic solution was administered to 9 non-fasted lactating Sprague-Dawley rats (276-344 g) on PPD 11 (Study No DISO245, Report No. RS000596Q226/01). Maternal blood was obtained at 1, 4 and 24 hours after dosing (3 rats/sampling time) for quantitative measurements of radioactivity in plasma and blood by liquid scintillation counting. In nursing pups (6 from each dam), liquid scintillation was used for quantitative determination of radioactivity in gastric tract and contents (3 pups from each of 3 dams/sampling time), and qualitative radioluminography was used for whole body autoradiography (3 pups from each of 3 dams/sampling time).

In the dams, the highest levels of drug were found at 4 hours after dosing, and by 24 hours the blood or plasma levels were about 1% or less of that observed at 4 hours. The level of radioactivity found in the gastric content in pups (based on percent of administered dose) indicated that the total amount of drug transferred to the neonate pups via the milk was very low. Based on radioluminography, drug was found to be present mainly in the gastric and intestinal contents during all 3 time periods after dosing, but was also found in the esophagus, liver and in urine.

made the bridge of

BEST POSSIBLE USPI

STUDY TITLE :

Milk excretion of radioactivity after single oral administration (180mg/kg) of [Cyclopentane-1-14C] SR 47436 (IRBESARTAN, BMS-186295) in the lactating female rat.

RESULTS:

Qualitative whole body radioluminography

SAMPLING TIMES (hours)	TISSUES OR ORGANS
1	gastric content > gut content > liver > oesophagus
4	gastric content > gut content > liver
24 gut content > gastric content > urine > liver	

Liquid scintillation counting

. Quantitative evaluation of gastric content in pups: mean values ± standard deviation (results expressed as % of the administered dose; n = 9 animals/sampling time except where indicated between brackets)

	SAMPLING TIMES	
1 hour	4 hours	24 hours
UDL	$0.006 \pm 0.005 (n=6)$	0.002 ± 0.003

UDL = Under Detection Limit

. Blood and plasma concentrations in dams: mean values \pm standard deviation (results expressed as mg Eq. of SR 47436/kg of tissue; n = 3 animals/sampling time)

SAMPLING TIMES (hours)	BLOOD	PLASMA
1	12.4 ± 0.8	20.9 ± 1.5
4	76.7 ± 69.5	122.8 ± 102.8
24	0.7 ± 0.1	1.0 ± 0.2

Comments

Following a single oral (180 mg/kg) administration of [Cyclopentane-1-14C] SR 47436 (IRBESARTAN, BMS186295) to the lactating Sprague Dawley rat, radioactivity was mainly located in gastric and gut contents of pups at times 1, 4 and 24 hours after drug intake in dams. Radioactivity was detected in liver and in ocsophagus 1 hour after administration, in liver 4 hours after administration and in urine and in liver 24 hours after intake.

Radioactivity was also detected in blood and plasma of dams at times 1, 4 and 24 hours after administration.

From these data, milk excretion of radioactivity could be postulated in the lactating Sprague Dawley rat.

C. SUMMARY AND EVALUATION

Irbesartan is an angiotensin II receptor antagonist that is being proposed for use, alone (NDA 20-757) or in fixed combination with hydrochlorothiazide (NDA 20-758) for the treatment of hypertension. The recommended initial dose is 150 mg once daily, but doses as high as 300 mg once daily may be used. Reproduction toxicology studies were performed according to the FDA "three segment" guidelines rather than the newer ICH guidelines. Doses administered to rats were 0, 50, 180 and 650 mg/kg/day, except for the Irbesartan/HCTZ study in which the doses of Irbesartan were 50 and 150 mg/kg/day. In the rabbit study, the doses were 0, 3, 10 and 30 mg Irbesartan/kg/day.

In the Segment I study of the effects of Irbesartan on fertility and general reproductive performance, which included fetal evaluation after C-section on GD 20, increased incidences (dose related) of hydroureter, renal pelvic cavitation and absence of renal papilla were observed in fetuses of all drug treated groups (in free-hand serial sectioned and/or dissected fetuses), and increased incidences (dose related) of subcutaneous edema (only in free hand sectioned fetuses) were observed in mid and high dose groups. The kidney effects, commonly associated with fetal immaturity (usually reversible), may have resulted from C-section on GD 20 instead of GD 21 or GD 22. The greater prevalence in treated groups may have been a consequence of a dose-related retardation of fetal growth (lower fetal weights); significantly decreased mean fetal weight, relative to concurrent control weight, however, was observed only at the high dose.

The sponsor attributes the renal effects and subcutaneous edema observed in the GD 20 fetuses to drug exposure during late gestation as these kidney effects were not observed in the Segment II developmental toxicity study in which there was no exposure to drug during the last trimester of gestation.

The sponsor also claims in the report and in their proposed labeling that the kidney and subcutaneous effects were transient. Although the veracity of this claim has not been established, similar effects were not observed at gross necropsy of 4 day old (culled) F_1 pups or pups that died, or pups sacrificed at 6 weeks of age.

In F₀ females, Irbesartan was associated with slight but statistically significant decreases in mean body weights (not dose related) before mating and during pregnancy, but not during lactation. Decreased food intake was observed only at the high dose. In F₀ males, Irbesartan was associated with a dose related decrease in mean body weight at all 3 doses and decreased food intake at the highest dose. In females allowed to litter, a reduced gestation index [(number of females with live born/number

of females with confirmed pregnancy) X 100] at the high dose was attributed to 3 females that were killed in extremis on GD 21 or GD 22, at the time of expected parturition. During the postnatal phase of this study, group mean body weights of male and female offspring were lower than control on PPD 25, but not on PPDs 1 or 4 (before culling), nor between PPD 4 and PPD 21 (after culling).

In the Segment II rat study of the effects of Irbesartan on in utero development, the only effects noted were significant decreases (non-dose related) in mean body weight gain and mean food intake of treated dams. Fetal visceral effects noted in the Segment I study (kidney anomalies and subcutaneous edema) were not observed in this study, even though examination for soft tissue anomalies included both free hand sectioning (for half of the fetuses of each dam) and dissection (for the remaining half of the fetuses). The Segment I study included treatment with this angiotensin II receptor antagonist during the periods of fetal and neonatal development; i.e. beyond GD 15, the last day of treatment in the Segment II study.

Although each tablet of the fixed combination proposed for marketing contains 150 mg of Irbesartan and 12.5 mg of hydrochlorothiazide (ratio of 12:1), the ratio tested in the Segment II combination study was 1:1. The combination drug treatment, even at 50/50 mg/kg/day, caused a greater decrease in maternal body weight gain in pregnant rats than did either drug alone at 150 mg/kg/day. In spite of this increase in toxicity to the dams with the drug combination, there did not appear to be an increase in developmental toxicity with the combination when compared to treatment with Irbesartan or hydrochlorothaizide alone.

In the Segment III rat study of the effects of Irbesartan on peri-postnatal development, the only effect noted in the offspring was a slightly lower than control mean body weight for both the male and female pups on PPD 25, as was also noted in the Segment I study. Although there were no effects of treatment on mean maternal body weight, a statistically significant, but non-dose related, decrease in food intake was noted for all treated groups.

In the Segment II rabbit study of the effects of Irbesartan on in utero development, severe maternal toxicity was observed at the high dose, manifested by a high incidence of deaths and abortions; decreased maternal body weight gain was seen in all Irbesartan treated groups. In the high dose group, there was a suggestion of an increased incidence of early resorptions and a concomitant decrease in number of live female fetuses. The investigators claimed there was no compound related effect on malformations, but with the low number of surviving fetuses and litters, such a possibility at the high dose could not be ruled out.

Ö
Ħ
TODIES
g
••
Ď
F
ջ
8
Ĕ
REPRO
~
IRBESARTAN
K
S
ä
22
Ä
O)
NG
Ĕ
FIND
E
H
ERS
5
9
~
ö
H
20
捒
Ħ
ij
臣
H
6
Š
ğ
Н

SPACOL	DOSAGE TRRESHOLDS FOR ADVERSE FINDINGS		IN INDESPRIEM REFRODUCTION STUDIES	Saru
Study Type & Species	Segment I, Rat	Segment III, Rat	Segment II, Rat	Segment II, Rabbit
Strain	Sprague-Dawley ¹	Sprague-Dawley¹	Sprague-Dawley²	New Zealand White ²
Doses (mg/kg/day)	0, 50, 180, 650	0, 50, 180, 650	0, 50, 150, 450	0, 3, 10, 30
Days Administered	6	GD 15 - PPD 24	GD 6 - GD 15	GD 6 - GD 18
Day of C-Section	GD 20	NA	GD 20	GD 29
No. Mated/Group	36/sex*	22	25	18
Mortality, Dams	>180<650 ¹⁰	>650	>650	>10<3011
Dam Weight Gain	<506	>650	>50<180 ¹²	>3<10
Dam Food Intake	>180<650\$	<50	<50%	>10<30
Postimplantation loss	NA	NA	NA	>10<30 ¹³
Fetal Weight	>180<650	Dam Food Intake	>650	>30
Placental Weight	>180<650	NA	>650	>30
Fetal Kidney Anomalies ⁷	<u>_</u> 550	NA	>650	>30
Fetal Subcut. Edema	>50<180	NA	>650	>30
Gestation Index	>180<650	>650	NA	NA
Pup Wt on PPD 25	<50\$	<503	NA	NA

From Charles River
Females from 15 days pre-mating to PPD 24; males from 71 days pre-mating until littering of all females.
Females from 15 days pre-mating to PPD 24; males from 71 days pre-mating until littering of all females.
Treated females were mated with treated males. 23 dams in each group were C-sectioned, the remainder were allowed to litter.
Only during the first 2 weeks of treatment.

Not dose related; evident before mating and during pregnancy, but not during lactation.
Increased incidences of (unilateral and bilateral) hydroureter and (unilateral and bilateral) renal pelvic cavitation.
Slightly (significantly) decreased during gestation but not dose related. Decreased at mid and high dose between PPD 7 and PPD 13.
Not dose related.
Three deaths associated with digestive disorders, and one of those deaths was associated with prolonged vaginal bleeding.
The deaths associated with digestive disorders, and one of those deaths was associated with prolonged vaginal bleeding.
At the 30 mg/kg/day dose, four were found dead, 2 were killed moribund and 2 were sacrificed after they aborted.
Statistically significant only on GD 16 @ low dose, but significant throughout treatment @ mid and high dose.

Toxicokinetic (TK) studies were not performed with the reproduction toxicity tests. Relative exposures (animals vs. human) could be estimated only from toxicokinetic data from repetitive dosing studies in males and non-pregnant females. Those TK studies did not include sampling following the initial dose of irbesartan, so that single dose exposure ratios were estimated from animal exposures following multiple dosing (steady state). The sponsor claims that "this extrapolation is supported by a single-dose and multiple-dose pharmacokinetic study in rats (Study No. TPK0009, Report No. RS0005920618/01), which demonstrated similar pharmacokinetics following single and multiple irbesartan doses of 10 mg/kg with no accumulation of drug."

The following table, submitted by the sponsor, summarizes relative exposures at doses evaluated in repeat-dose toxicology studies with irbesartan in rats.

Dose		Sex	AUC (μg x h/ml)		Ratio*		
			Single dose	Steady state	Single dose	Steady state	
Human	300	M F	18.3 ^b	20.6			
	mg/day	Г	18.8 ^b	23.4			
	.10	M		17.3°	0.95	0.84	
_	mg/kg/day	F		16.1°	0.86	0.69	
_	30	М		16.3°	0.89	0.79	
_	mg/kg/day	F		15.0°	0.80	0.64	
Sprague	90	М		23.6°	1.29	1.15	
Dawley	mg/kg/day	F		39.9°	2.12	1.71	
Rat	250	М		24.9 ^d	1.36	1.21	
	mg/kg/day	F		68.7 ^d	3.65	2.94	
	500	М		47.3 ^d	2.58	2.30	
	mg/kg/day	F		126.0 ^d	6.70	5.38	
-	1000	M		178.4 ^d	9.75	8.66	
	mg/kg/day	F		202.2 ^d	10.76	8.64	

Relative exposure of rats when compared with mild-moderate hypertensive patients.

AUC following single dose of 300 mg/day not determined. An estimated value was obtained by multiplying the ratio of the single dose/multiple dose AUCs at the 100 mg dose (from study CV131-004) by the multiple dose AUC value at the 300 mg dose (from study CV131-057).

Mean SR47436 AUC value obtained after 5 and 26 weeks from the 6-month oral toxicity study TXC 0857-RS0006930712/01.

Mean SR47436 AUC value obtained after 5, 13, and 26 weeks from the 6-month oral toxicity study TXC 0949-RS0006960118/01

The above data were used in interpolating estimates of steadystate exposure and exposure ratios (animal vs human) at doses used in reproductive toxicology studies in rats. The following table summarizes this information.

	Dose	Sex	AUC (μ g x h/ml)		Ratio*		
			Single dose	Steady state	Single dose	Steady state	
Human	300	M	18.3 ^b	20.6			
	mg/day	F	18.8 ^b	23.4			
	50	М			1.02	0.91	
	mg/kg/day	F			1.23	1.00	
	150	M		-	1.32	1.17	
	mg/kg/day	F			2.69	2.17	
Sprague	180	M			1.68	1.18	
Dawley	mg/kg/day	F			2.98	1.86	
Rat	450	M			2.34	2.08	
	mg/kg/day	F			6.09	4.89	
	650	M			4.73	4.21	
	mg/kg/day	F			7.92	6.36	

Interpolated from ratios determined on the basis of mean exposures in repeat dose toxicity studies.

AUC following single dose of 300 mg/day not determined. An estimated value was obtained by multiplying the ratio of the single dose/multiple dose AUCs at the 100 mg dose (from study CV131-004) by the multiple dose AUC value at the 300 mg dose (from study CV131-057).

The Segment II study with irbesartan/HCTZ in rats did not include toxicokinetic measurements. However, exposures can be compared using toxicokinetic data from the 6-month repeat-dose toxicology study with irbesartan/HCTZ. The following table summarizes relative exposures to Irbesartan in that study.

	Dose	Sex	AUC (μg x h/ml)		Ratio	
			Single dose	Steady state	Single dose	Steady state
Human	300 mg/day	F⁵	18.8°	23.4		
Sprague Dawley Rat	10:10 ^d mg/kg/day	F	16.2	46.0	0.86	1.97
	90:90 ^d mg/kg/day	F [*]	27.2	57.4	1.45	2.45
	90:0 ^d mg/kg/day	F	33.6	54.6	1.79	2.33

- ^a Relative exposure of rats when compared with mild-moderate hypertensive patients.
- b Only female data are relevant to the Segment II reproductive evaluation.
- AUC following single dose of 300 mg/day not determined. An estimated value was obtained by multiplying the ratio of the single dose/multiple dose AUCs at the 100 mg dose (from study CV131-004) by the multiple dose AUC value at the 300 mg dose (from study CV131-057).
- Dose expressed as ratio of irbesartan to HCTZ (irbesartan:HCTZ).

These pharmacokinetic data were used in estimating the exposure ratios (animal vs. human) following single and multiple-doses of 50:50 mg (irbesartan:HCTZ)/kg in pregnant rats. These estimates are 1.15 and 2.11, respectively. The ratios at the highest dose (150:150 mg/kg) would be >1.45 and >2.45 for the single-dose and multiple doses, respectively.

ይኮስያይ<u>ን</u>ሶ ቸህነር ክሃለል

No specific pharmacokinetic parameters were measured during the rabbit reproduction study and no data are available after repeated administration to non-pregnant rabbits. Extrapolation for comparisons of exposure can only be done using data from a single dose pharmacokinetic study in non-pregnant females using radiolabeled compound (Study No. ABS0100, Report No. RS0005920902/01).

The following table summarizes the estimated exposure and exposure ratio for the intermediate dosage level (10 mg/kg/day, the NOEL for fetuses) in the rabbit developmental toxicity study.

	Dose	Dose Sex	AUC observed (μg equiv. x h/ml)	SR 47436 AUC (μg x h/ml)		Ratio	
				Single dose	Steady state	Single dose	Steady state
Human	300 mg	F		18.8 ^b	23.4		
Rabbit	10 mg/kg	F	10.8	≈0.5°		0.03	

^a Relative exposure of rats when compared with mild-moderate hypertensive human.

AUC following single dose of 300 mg/day not determined. An estimated value was obtained by multiplying the ratio of the single dose/multiple dose AUCs at the 100 mg dose (from study CV131-004) by the multiple dose AUC value at the 300 mg dose (from study CV131-057).

^c Value extrapolated using metabolism data: irbesartan accounting for 68 to 40% of radioactivity up to 8h.

This estimate suggests that exposures of pregnant rabbits to irbesartan in the developmental toxicity study were lower than exposures expected in humans following a therapeutic dose.

In a tissue distribution study in pregnant rats that received single oral doses of 150 mg/kg ¹⁴C-Irbesartan on GD 11 (embryo-organogenesis stage) or GD 18 (fetal stage), the highest drug concentrations (based on radioactivity) in maternal plasma and tissues, in the placenta and in the fetus, were found at 2 hours (the first sampling), and they progressively decreased with time up to 48 hours post-dosing. With the exception of maternal brain, the level of drug concentration found in maternal tissues was considerably higher than that found in the whole embryo or fetus, with the possible exception of the fetal gut (GD 18), which tended to retain radioactivity even after 48 hours. When considering the whole fetus, radioactivity was found to be below the limit of detection (0.3 mgEq/kg) by 24 hours after dosing, whether the drug was administered on GD 11 or GD 18.

In a similar tissue distribution study in pregnant rabbits which received a single oral dose of 10 mg/kg, the level of radioactivity in the administered drug was low, resulting in low levels in maternal tissues, and trace amounts that were below quantifiable limits in whole fetuses. Although the levels in

fetuses were below quantifiable limits, detectable levels persisted to 24 hours post dosing. The highest drug concentrations in maternal plasma and tissues were found at 2 hours (the first sampling), and then progressively decreased with time up to 48 hours post-dosing. The data indicate preferential accumulation or retention by specific organs of the fetus, particularly the gall bladder and gastrointestinal tract, which the investigators attributed to biliary excretion by the fetus. The data also suggest retention of the drug by the whole fetus. Although the effect of repeated doses on transfer of drug to the fetus was not tested, the rabbit data suggest that if given as repeated oral daily doses during pregnancy, there is the possibility of a preferential accumulation by the fetus.

From the results of a study in rats on excretion of Irbesartan into milk, it can be postulated that excretion into milk of rats is low following a single oral dose of Irbesartan.

4077470 7415 814 611 651 3

APPEADO DEST

APPEARS THIS WAY
ON OAKGINAL

10 Pages Purged

(DRAFT LABeling)